{"title":"Downscaling SMAP soil moisture product in cold and arid region: Incorporating NDSI and BSI into the random forest algorithm","authors":"Mingxing Gao, Kui Zhu, Yanjun Guo, Xuhang Han, Dongsheng Li, Shujian Zhang","doi":"10.1002/vzj2.20323","DOIUrl":null,"url":null,"abstract":"Soil moisture (SM) is a critical element of the hydrological cycle, land surface processes, and surface energy balance. However, the low spatial resolution of commonly used SM products limits the application of SM in agriculture and eco‐hydrology in cold and arid regions. In this study, the normalized difference soil index (NDSI) and bare soil index (BSI) were added to traditional downscaling factors including land surface temperature, normalized difference vegetation index, digital elevation mode, apparent thermal inertia, Albedo, and temperature vegetation dryness index, as they are more strongly correlated with surface SM in the bare soil‐vegetation alternation zone of such region. Using the random forest algorithm, a downscaling model of SM was constructed for such region. The accuracy of the downscaled SM estimates was validated by comparing them with the original SM data collected from May to September 2021, which is the non‐freezing period of the soil. The findings indicate that the newly added NDSI and BSI have good correlation with SM. Incorporating NDSI and BSI to construct the downscaled model enhances the accuracy by over 19% compared to excluding them, while also providing a more comprehensive representation of SM information. NDSI and BSI can be well applied to the downscaled research of SM in the bare soil‐vegetation alternation zone, which is of great value for the study of eco‐hydrology and agricultural drought monitoring in cold and arid regions.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20323","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil moisture (SM) is a critical element of the hydrological cycle, land surface processes, and surface energy balance. However, the low spatial resolution of commonly used SM products limits the application of SM in agriculture and eco‐hydrology in cold and arid regions. In this study, the normalized difference soil index (NDSI) and bare soil index (BSI) were added to traditional downscaling factors including land surface temperature, normalized difference vegetation index, digital elevation mode, apparent thermal inertia, Albedo, and temperature vegetation dryness index, as they are more strongly correlated with surface SM in the bare soil‐vegetation alternation zone of such region. Using the random forest algorithm, a downscaling model of SM was constructed for such region. The accuracy of the downscaled SM estimates was validated by comparing them with the original SM data collected from May to September 2021, which is the non‐freezing period of the soil. The findings indicate that the newly added NDSI and BSI have good correlation with SM. Incorporating NDSI and BSI to construct the downscaled model enhances the accuracy by over 19% compared to excluding them, while also providing a more comprehensive representation of SM information. NDSI and BSI can be well applied to the downscaled research of SM in the bare soil‐vegetation alternation zone, which is of great value for the study of eco‐hydrology and agricultural drought monitoring in cold and arid regions.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.