Four-party quantum secure direct communication based on hyperentangled bell states

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Ran Guo, Ri-Gui Zhou, Xiao-Xue Zhang
{"title":"Four-party quantum secure direct communication based on hyperentangled bell states","authors":"Ran Guo, Ri-Gui Zhou, Xiao-Xue Zhang","doi":"10.1142/s0217984924503111","DOIUrl":null,"url":null,"abstract":"<p>Quantum Secure Direct Communication (QSDC) is a promising approach for secure information exchange. This paper proposes an efficient and secure four-party QSDC scheme utilizing hyperentangled Bell states in the polarization degree of freedom, the first longitudinal momentum degree of freedom and the second longitudinal momentum degree of freedom. The four participants can perform different unitary operations to independently encode their secret messages onto photons in three degrees of freedom, subsequently transmitting them directly through the quantum channel. In this proposed protocol, each degree of freedom of the photon can effectively carry two bits of information. Each round of transmission by a photon enables the four legitimate participants to obtain six classical bits of information. Notably, when compared to other photons based single-degree-of-freedom QSDC network protocols, the capacity of proposed QSDC protocol is tripled. Therefore, it significantly enhances the information transmission capability. Furthermore, comprehensive security analysis shows that our QSDC network protocol can withstand various attacks from external eavesdroppers.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"102 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503111","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Secure Direct Communication (QSDC) is a promising approach for secure information exchange. This paper proposes an efficient and secure four-party QSDC scheme utilizing hyperentangled Bell states in the polarization degree of freedom, the first longitudinal momentum degree of freedom and the second longitudinal momentum degree of freedom. The four participants can perform different unitary operations to independently encode their secret messages onto photons in three degrees of freedom, subsequently transmitting them directly through the quantum channel. In this proposed protocol, each degree of freedom of the photon can effectively carry two bits of information. Each round of transmission by a photon enables the four legitimate participants to obtain six classical bits of information. Notably, when compared to other photons based single-degree-of-freedom QSDC network protocols, the capacity of proposed QSDC protocol is tripled. Therefore, it significantly enhances the information transmission capability. Furthermore, comprehensive security analysis shows that our QSDC network protocol can withstand various attacks from external eavesdroppers.

基于超纠缠钟态的四方量子安全直接通信
量子安全直接通信(QSDC)是一种前景广阔的安全信息交换方法。本文利用偏振自由度、第一纵动量自由度和第二纵动量自由度的超纠缠贝尔态,提出了一种高效、安全的四方 QSDC 方案。四位参与者可以执行不同的单元操作,将他们的秘密信息独立编码到三个自由度的光子上,然后直接通过量子信道进行传输。在这个拟议的协议中,光子的每个自由度可以有效携带两个比特的信息。光子的每一轮传输都能让四个合法参与者获得六个经典比特的信息。值得注意的是,与其他基于光子的单自由度 QSDC 网络协议相比,所提出的 QSDC 协议的容量提高了三倍。因此,它大大提高了信息传输能力。此外,全面的安全性分析表明,我们的 QSDC 网络协议可以抵御来自外部窃听者的各种攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信