Lijie Chen, Qianze Peng, Xiaohua Du, Weixing Zhang, Ju'e Cheng, Shu'e Sun, Deyong Zhang, Pin Su, Yong Liu
{"title":"A bacterial protein Rhp-PSP inhibits plant viral proliferation through endoribonuclease activity1","authors":"Lijie Chen, Qianze Peng, Xiaohua Du, Weixing Zhang, Ju'e Cheng, Shu'e Sun, Deyong Zhang, Pin Su, Yong Liu","doi":"10.1016/j.jia.2024.03.051","DOIUrl":null,"url":null,"abstract":"Plant virus causes massive crop losses globally. However, there is currently no effective measure to control plant viral disease. Previously, we identify an antiviral protein Rhp-PSP, produced by the bacterial strain JSC-3b. In this study, we discover that the antiviral activity of Rhp-PSP relies on its endoribonuclease activity. Convert the arginine (R) residue at position 129 onto alanine (A) abolish its endoribonuclease activity on coat protein (CP) RNA of tobacco mosaic virus (TMV), consequentially, compromised the antiviral activity of Rhp-PSP. Further investigation demonstrates that, the mutant Rhp-PSP is unable to form the homotrimer as the wild type, indicating the importance of quaternary junction for the endoribonuclease activity. Overexpression of Rhp-PSP in significantly enhances the resistance against TMV of seedlings, while expression of Rhp-PSP did not, confirming that endoribonuclease activity is responsible for the antiviral activity of Rhp-PSP. In addition, foliar spray of Rhp-PSP solution on tomato and pepper plants significantly reduces the disease index of viral diseases, indicating that Rhp-PSP shows potential to develop antiviral agent in practice.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"3 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.03.051","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant virus causes massive crop losses globally. However, there is currently no effective measure to control plant viral disease. Previously, we identify an antiviral protein Rhp-PSP, produced by the bacterial strain JSC-3b. In this study, we discover that the antiviral activity of Rhp-PSP relies on its endoribonuclease activity. Convert the arginine (R) residue at position 129 onto alanine (A) abolish its endoribonuclease activity on coat protein (CP) RNA of tobacco mosaic virus (TMV), consequentially, compromised the antiviral activity of Rhp-PSP. Further investigation demonstrates that, the mutant Rhp-PSP is unable to form the homotrimer as the wild type, indicating the importance of quaternary junction for the endoribonuclease activity. Overexpression of Rhp-PSP in significantly enhances the resistance against TMV of seedlings, while expression of Rhp-PSP did not, confirming that endoribonuclease activity is responsible for the antiviral activity of Rhp-PSP. In addition, foliar spray of Rhp-PSP solution on tomato and pepper plants significantly reduces the disease index of viral diseases, indicating that Rhp-PSP shows potential to develop antiviral agent in practice.
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.