Xiaolong Zheng, Ruinan Li, Yuting Wang, Liang Liu, Huadong Ma
{"title":"PolarScheduler: Dynamic Transmission Control for Floating LoRa Networks","authors":"Xiaolong Zheng, Ruinan Li, Yuting Wang, Liang Liu, Huadong Ma","doi":"10.1145/3652856","DOIUrl":null,"url":null,"abstract":"<p>LoRa is widely deploying in aquatic environments to support various Internet of Things applications. However, floating LoRa networks suffer from serious performance degradation due to the polarization loss caused by the swaying antenna. Existing methods that only control the transmission starting from the aligned attitude have limited improvement due to the ignorance of aligned period length. In this paper, we propose <i>PolarScheduler</i>, a dynamic transmission control method for floating LoRa networks. <i>PolarScheduler</i> actively controls transmission configurations to match polarization aligned periods. We propose a V-zone model to capture diverse aligned periods under different configurations. We also design a low-cost model establishment method and an efficient optimal configuration searching algorithm to make full use of aligned periods. To deal with packet collisions in a multiple-node environment, we further propose an Attitude-aware Slot-allocation MAC protocol, which avoids both packet collisions and polarization loss. We implement <i>PolarScheduler</i> on commercial LoRa platforms and evaluate its performance in a deployed network. Extensive experiments show that <i>PolarScheduler</i> can improve the packet delivery rate and throughput by up to 20.0% and 15.7%, compared to the state-of-the-art method.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"3 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652856","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
LoRa is widely deploying in aquatic environments to support various Internet of Things applications. However, floating LoRa networks suffer from serious performance degradation due to the polarization loss caused by the swaying antenna. Existing methods that only control the transmission starting from the aligned attitude have limited improvement due to the ignorance of aligned period length. In this paper, we propose PolarScheduler, a dynamic transmission control method for floating LoRa networks. PolarScheduler actively controls transmission configurations to match polarization aligned periods. We propose a V-zone model to capture diverse aligned periods under different configurations. We also design a low-cost model establishment method and an efficient optimal configuration searching algorithm to make full use of aligned periods. To deal with packet collisions in a multiple-node environment, we further propose an Attitude-aware Slot-allocation MAC protocol, which avoids both packet collisions and polarization loss. We implement PolarScheduler on commercial LoRa platforms and evaluate its performance in a deployed network. Extensive experiments show that PolarScheduler can improve the packet delivery rate and throughput by up to 20.0% and 15.7%, compared to the state-of-the-art method.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.