{"title":"A Context-enhanced Adaptive Graph Network for Time-sensitive Question Answering","authors":"Jitong Li, Shaojuan Wu, Xiaowang Zhang, Zhiyong Feng","doi":"10.1145/3653674","DOIUrl":null,"url":null,"abstract":"<p>Time-sensitive question answering is to answer questions limited to certain timestamps based on the given long document, which mixes abundant temporal events with an explicit or implicit timestamp. While existing models make great progress in answering time-sensitive questions, their performance degrades dramatically when a long distance separates the correct answer from the timestamp mentioned in the question. In this paper, we propose a Context-enhanced Adaptive Graph network (CoAG) to capture long-distance dependencies between sentences within the extracted question-related episodes. Specifically, we propose a time-aware episode extraction module that obtains question-related context based on timestamps in the question and document. As the involvement of episodes confuses sentences with adjacent timestamps, an adaptive message passing mechanism is designed to capture and transfer inter-sentence differences. In addition, we present a hybrid text encoder to highlight question-related context built on global information. Experimental results show that CoAG significantly improves compared to state-of-the-art models on five benchmarks. Moreover, our model has a noticeable advantage in solving long-distance time-sensitive questions, improving the EM scores by 2.03% to 6.04% on TimeQA-Hard.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"104 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653674","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Time-sensitive question answering is to answer questions limited to certain timestamps based on the given long document, which mixes abundant temporal events with an explicit or implicit timestamp. While existing models make great progress in answering time-sensitive questions, their performance degrades dramatically when a long distance separates the correct answer from the timestamp mentioned in the question. In this paper, we propose a Context-enhanced Adaptive Graph network (CoAG) to capture long-distance dependencies between sentences within the extracted question-related episodes. Specifically, we propose a time-aware episode extraction module that obtains question-related context based on timestamps in the question and document. As the involvement of episodes confuses sentences with adjacent timestamps, an adaptive message passing mechanism is designed to capture and transfer inter-sentence differences. In addition, we present a hybrid text encoder to highlight question-related context built on global information. Experimental results show that CoAG significantly improves compared to state-of-the-art models on five benchmarks. Moreover, our model has a noticeable advantage in solving long-distance time-sensitive questions, improving the EM scores by 2.03% to 6.04% on TimeQA-Hard.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.