On the Triple Junction Problem without Symmetry Hypotheses

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nicholas D. Alikakos, Zhiyuan Geng
{"title":"On the Triple Junction Problem without Symmetry Hypotheses","authors":"Nicholas D. Alikakos,&nbsp;Zhiyuan Geng","doi":"10.1007/s00205-024-01966-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the Allen–Cahn system <span>\\(\\Delta u-W_u(u)=0\\)</span>, <span>\\(u:\\mathbb {R}^2\\rightarrow \\mathbb {R}^2\\)</span>, where <span>\\(W\\in C^2(\\mathbb {R}^2,[0,+\\infty ))\\)</span> is a potential with three global minima. We establish the existence of an entire solution <i>u</i> which possesses a triple junction structure. The main strategy is to study the global minimizer <span>\\(u_\\varepsilon \\)</span> of the variational problem <span>\\(\\min \\int _{B_1} \\left( \\frac{\\varepsilon }{2}\\vert \\nabla u\\vert ^2+\\frac{1}{\\varepsilon }W(u) \\right) \\,\\textrm{d}z\\)</span>, <span>\\(u=g_\\varepsilon \\)</span> on <span>\\(\\partial B_1\\)</span> for some suitable boundary data <span>\\(g_\\varepsilon \\)</span>. The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01966-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Allen–Cahn system \(\Delta u-W_u(u)=0\), \(u:\mathbb {R}^2\rightarrow \mathbb {R}^2\), where \(W\in C^2(\mathbb {R}^2,[0,+\infty ))\) is a potential with three global minima. We establish the existence of an entire solution u which possesses a triple junction structure. The main strategy is to study the global minimizer \(u_\varepsilon \) of the variational problem \(\min \int _{B_1} \left( \frac{\varepsilon }{2}\vert \nabla u\vert ^2+\frac{1}{\varepsilon }W(u) \right) \,\textrm{d}z\), \(u=g_\varepsilon \) on \(\partial B_1\) for some suitable boundary data \(g_\varepsilon \). The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.

Abstract Image

论无对称假定的三重交界问题
我们研究了 Allen-Cahn 系统 \(\Delta u-W_u(u)=0\), \(u:\mathbb {R}^2\rightarrow \mathbb {R}^2\), 其中 \(W\in C^2(\mathbb {R}^2,[0,+\infty ))\) 是一个具有三个全局最小值的势。我们确定了具有三重结点结构的全解 u 的存在。主要策略是研究变分问题的全局最小值 \(u_\varepsilon\) (\(min \int _{B_1})\leave( \frac{\varepsilon }{2}\vert \nabla u\vert ^2+\frac{1}{\varepsilon }W(u) \right) \,\textrm{d}z\), \(u=g_\varepsilon \) on \(\partial B_1\) for some suitable boundary data \(g_\varepsilon \)。出发点是一个能量下限,它在估计扩散界面的位置和大小方面起着至关重要的作用。我们不对解法或势能强加任何对称性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信