Thompson’s semigroup and the first Hochschild cohomology

Linzhe Huang
{"title":"Thompson’s semigroup and the first Hochschild cohomology","authors":"Linzhe Huang","doi":"10.4153/s0008414x24000154","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we apply the theory of algebraic cohomology to study the amenability of Thompson’s group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {F}$</span></span></img></span></span>. We introduce the notion of unique factorization semigroup which contains Thompson’s semigroup <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}$</span></span></img></span></span> and the free semigroup <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {F}_n$</span></span></img></span></span> on <span>n</span> (<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\geq 2$</span></span></img></span></span>) generators. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {F}_n)$</span></span></img></span></span> be the Banach algebras generated by the left regular representations of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {F}_n$</span></span></img></span></span>, respectively. We prove that all derivations on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {F}_n)$</span></span></span></span> are automatically continuous, and every derivation on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></span></span> is induced by a bounded linear operator in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}(\\mathcal {S})$</span></span></span></span>, the weak-operator closed Banach algebra consisting of all bounded left convolution operators on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$l^2(\\mathcal {S})$</span></span></span></span>. Moreover, we prove that the first continuous Hochschild cohomology group of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></span></span> with coefficients in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}(\\mathcal {S})$</span></span></span></span> vanishes. These conclusions provide positive indications for the left amenability of Thompson’s semigroup.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply the theory of algebraic cohomology to study the amenability of Thompson’s group Abstract Image$\mathcal {F}$. We introduce the notion of unique factorization semigroup which contains Thompson’s semigroup Abstract Image$\mathcal {S}$ and the free semigroup Abstract Image$\mathcal {F}_n$ on n (Abstract Image$\geq 2$) generators. Let Abstract Image$\mathfrak {B}(\mathcal {S})$ and Abstract Image$\mathfrak {B}(\mathcal {F}_n)$ be the Banach algebras generated by the left regular representations of Abstract Image$\mathcal {S}$ and Abstract Image$\mathcal {F}_n$, respectively. We prove that all derivations on Abstract Image$\mathfrak {B}(\mathcal {S})$ and Abstract Image$\mathfrak {B}(\mathcal {F}_n)$ are automatically continuous, and every derivation on Abstract Image$\mathfrak {B}(\mathcal {S})$ is induced by a bounded linear operator in Abstract Image$\mathcal {L}(\mathcal {S})$, the weak-operator closed Banach algebra consisting of all bounded left convolution operators on Abstract Image$l^2(\mathcal {S})$. Moreover, we prove that the first continuous Hochschild cohomology group of Abstract Image$\mathfrak {B}(\mathcal {S})$ with coefficients in Abstract Image$\mathcal {L}(\mathcal {S})$ vanishes. These conclusions provide positive indications for the left amenability of Thompson’s semigroup.

汤普森半群和第一霍赫希尔德同调
在本文中,我们应用代数同调理论来研究汤普森群 $\mathcal {F}$的可亲和性。我们引入了唯一因式分解半群的概念,它包含汤普森半群 $\mathcal {S}$ 和 n ($\geq 2$) 个子上的自由半群 $\mathcal {F}_n$ 。让 $\mathfrak {B}(\mathcal {S})$ 和 $\mathfrak {B}(\mathcal {F}_n)$ 分别成为由 $\mathcal {S}$ 和 $\mathcal {F}_n$ 的左正则表达所产生的巴纳赫数组。我们证明 $\mathfrak {B}(\mathcal {S})$ 和 $\mathfrak {B}(\mathcal {F}_n)$ 上的所有求导都是自动连续的、而且 $\mathfrak {B}(\mathcal {S})$ 上的每个导数都是由\mathcal {L}(\mathcal {S})$ 中的有界线性算子诱导的,\mathcal {L}(\mathcal {S})$ 是弱算子封闭巴纳赫代数,由 $l^2(\mathcal {S})$ 上所有有界左卷积算子组成。此外,我们还证明了系数为 $\mathcal {L}(\mathcal {S})$ 的 $\mathfrak {B}(\mathcal {S})$ 的第一个连续霍赫希尔德同调群消失了。这些结论为汤普森半群的左适配性提供了积极的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信