{"title":"Thompson’s semigroup and the first Hochschild cohomology","authors":"Linzhe Huang","doi":"10.4153/s0008414x24000154","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we apply the theory of algebraic cohomology to study the amenability of Thompson’s group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {F}$</span></span></img></span></span>. We introduce the notion of unique factorization semigroup which contains Thompson’s semigroup <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}$</span></span></img></span></span> and the free semigroup <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {F}_n$</span></span></img></span></span> on <span>n</span> (<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\geq 2$</span></span></img></span></span>) generators. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {F}_n)$</span></span></img></span></span> be the Banach algebras generated by the left regular representations of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {F}_n$</span></span></img></span></span>, respectively. We prove that all derivations on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {F}_n)$</span></span></span></span> are automatically continuous, and every derivation on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></span></span> is induced by a bounded linear operator in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}(\\mathcal {S})$</span></span></span></span>, the weak-operator closed Banach algebra consisting of all bounded left convolution operators on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$l^2(\\mathcal {S})$</span></span></span></span>. Moreover, we prove that the first continuous Hochschild cohomology group of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {B}(\\mathcal {S})$</span></span></span></span> with coefficients in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240320082257093-0036:S0008414X24000154:S0008414X24000154_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}(\\mathcal {S})$</span></span></span></span> vanishes. These conclusions provide positive indications for the left amenability of Thompson’s semigroup.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we apply the theory of algebraic cohomology to study the amenability of Thompson’s group $\mathcal {F}$. We introduce the notion of unique factorization semigroup which contains Thompson’s semigroup $\mathcal {S}$ and the free semigroup $\mathcal {F}_n$ on n ($\geq 2$) generators. Let $\mathfrak {B}(\mathcal {S})$ and $\mathfrak {B}(\mathcal {F}_n)$ be the Banach algebras generated by the left regular representations of $\mathcal {S}$ and $\mathcal {F}_n$, respectively. We prove that all derivations on $\mathfrak {B}(\mathcal {S})$ and $\mathfrak {B}(\mathcal {F}_n)$ are automatically continuous, and every derivation on $\mathfrak {B}(\mathcal {S})$ is induced by a bounded linear operator in $\mathcal {L}(\mathcal {S})$, the weak-operator closed Banach algebra consisting of all bounded left convolution operators on $l^2(\mathcal {S})$. Moreover, we prove that the first continuous Hochschild cohomology group of $\mathfrak {B}(\mathcal {S})$ with coefficients in $\mathcal {L}(\mathcal {S})$ vanishes. These conclusions provide positive indications for the left amenability of Thompson’s semigroup.