Comparing diagonals on the associahedra

Pub Date : 2024-03-20 DOI:10.4310/hha.2024.v26.n1.a9
Samson Saneblidze, Ronald Umble
{"title":"Comparing diagonals on the associahedra","authors":"Samson Saneblidze, Ronald Umble","doi":"10.4310/hha.2024.v26.n1.a9","DOIUrl":null,"url":null,"abstract":"We prove that the formula for the diagonal approximation $\\Delta_K$ on J. Stasheff’s $n$-dimensional associahedron $K_{n+2}$ derived by the current authors in $\\href{ https://dx.doi.org/10.4310/HHA.2004.v6.n1.a20}{[7]}$ agrees with the “magical formula” for the diagonal approximation $\\Delta^\\prime_K$ derived by Markl and Shnider in $\\href{ https://www.ams.org/journals/tran/2006-358-06/S0002-9947-05-04006-7/ }{[5]}$, by J.-L. Loday in $\\href{ https://doi.org/10.1007/978-0-8176-4735-3_13 }{[4]}$, and more recently by Masuda, Thomas, Tonks, and Vallette in $\\href{ https://doi.org/10.5802/jep.142}{[6]}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the formula for the diagonal approximation $\Delta_K$ on J. Stasheff’s $n$-dimensional associahedron $K_{n+2}$ derived by the current authors in $\href{ https://dx.doi.org/10.4310/HHA.2004.v6.n1.a20}{[7]}$ agrees with the “magical formula” for the diagonal approximation $\Delta^\prime_K$ derived by Markl and Shnider in $\href{ https://www.ams.org/journals/tran/2006-358-06/S0002-9947-05-04006-7/ }{[5]}$, by J.-L. Loday in $\href{ https://doi.org/10.1007/978-0-8176-4735-3_13 }{[4]}$, and more recently by Masuda, Thomas, Tonks, and Vallette in $\href{ https://doi.org/10.5802/jep.142}{[6]}$.
分享
查看原文
关联三角形对角线的比较
我们证明,目前作者在 $\href{ https://dx.doi.org/10.4310/HHA.2004..v6.n1.a20}{[7]}$ 与 Markl 和 Shnider 在 $\href{ https://www.ams.org/journals/tran/2006-358-06/S0002-9947-05-04006-7/ }{[5]}$ 中、J.-L. Loday 在 $\href{ https://doi.org/10.1007/978-0-8176-4735-3_13 }{[4]}$ 中以及最近 Masuda、Thomas、Tonks 和 Vallette 在 $\href{ https://doi.org/10.5802/jep.142}{[6]}$ 中得出的对角线近似 $\Delta^\prime_K$ 的 "神奇公式 "一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信