Determination of the influence of particle spatial distribution and interface heterogeneity on tensile fracture of ordinary refractory ceramics by applying discrete element modelling

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Determination of the influence of particle spatial distribution and interface heterogeneity on tensile fracture of ordinary refractory ceramics by applying discrete element modelling","authors":"","doi":"10.1007/s40571-024-00716-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The microstructures and local characteristics of ordinary refractory ceramics are heterogeneous. The discrete element (DE) method was used to consider the variation in particle spatial distributions and statistically distributed interface properties (uniform, Weibull) between elements. In addition, three Weibull distributions with different shape parameters were evaluated. A uniaxial tensile test was used to study the effects of particle spatial distributions and interface property distributions on the stress–strain curve, tensile strength, and crack propagation. The results of the test show that the particle spatial distribution significantly influences crack propagation and fracture patterns, and the interface condition plays an important role in mechanical responses, crack propagation, and fracture mechanisms and patterns. The discrete element modelling of uniaxial tensile and compressive tests shows that brittle materials exhibit asymmetric mechanical responses to compression and tension loading including static Young’s modulus.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00716-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructures and local characteristics of ordinary refractory ceramics are heterogeneous. The discrete element (DE) method was used to consider the variation in particle spatial distributions and statistically distributed interface properties (uniform, Weibull) between elements. In addition, three Weibull distributions with different shape parameters were evaluated. A uniaxial tensile test was used to study the effects of particle spatial distributions and interface property distributions on the stress–strain curve, tensile strength, and crack propagation. The results of the test show that the particle spatial distribution significantly influences crack propagation and fracture patterns, and the interface condition plays an important role in mechanical responses, crack propagation, and fracture mechanisms and patterns. The discrete element modelling of uniaxial tensile and compressive tests shows that brittle materials exhibit asymmetric mechanical responses to compression and tension loading including static Young’s modulus.

应用离散元素模型确定颗粒空间分布和界面异质性对普通耐火陶瓷拉伸断裂的影响
摘要 普通耐火陶瓷的微观结构和局部特性是异质的。采用离散元素(DE)方法考虑了粒子空间分布的变化和元素间统计分布的界面特性(均匀分布、Weibull 分布)。此外,还评估了三种具有不同形状参数的 Weibull 分布。利用单轴拉伸试验研究了颗粒空间分布和界面属性分布对应力-应变曲线、拉伸强度和裂纹扩展的影响。试验结果表明,颗粒空间分布对裂纹扩展和断裂模式有显著影响,界面条件对力学响应、裂纹扩展、断裂机制和模式起着重要作用。单轴拉伸和压缩试验的离散元建模表明,脆性材料对压缩和拉伸加载(包括静态杨氏模量)表现出不对称的机械响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信