Interface Shear Failure Behavior Between Normal Concrete (NC) and Ultra-High Performance Concrete (UHPC)

IF 3.6 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Boshan Zhang, Jiangjiang Yu, Weizhen Chen, Jianbo Chen, Heng Li, Jialun Niu
{"title":"Interface Shear Failure Behavior Between Normal Concrete (NC) and Ultra-High Performance Concrete (UHPC)","authors":"Boshan Zhang, Jiangjiang Yu, Weizhen Chen, Jianbo Chen, Heng Li, Jialun Niu","doi":"10.1186/s40069-023-00657-6","DOIUrl":null,"url":null,"abstract":"<p>Ultra-high performance concrete (UHPC) with excellent mechanical properties and durability is a promising material for reinforcement of existing normal concrete (NC) structures. In this paper, the shear failure behavior of the NC–UHPC interface was studied by the slant shear test and the SEM (scanning electron microscope) visualization test, considering influence of the substrate strength and the interface roughed treatment. As the NC substrate and the UHPC overlay are tightly combined at the interface transition zone (ITZ), the interface exhibits good slant shear performance, and the measured interfacial shear strength could reach 19.4 MPa with C40 substrate and 21.8 MPa with C50 substrate. In addition, the microstructure and composition of the ITZ, the possible interfacial failure modes, and the load-carrying mechanism of the interface under compression–shear force are revealed. The high interface roughness and the substrate strength have positive influence on the shear strength, and greatly affect the prone failure mode and the load-slip characteristic.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00657-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-high performance concrete (UHPC) with excellent mechanical properties and durability is a promising material for reinforcement of existing normal concrete (NC) structures. In this paper, the shear failure behavior of the NC–UHPC interface was studied by the slant shear test and the SEM (scanning electron microscope) visualization test, considering influence of the substrate strength and the interface roughed treatment. As the NC substrate and the UHPC overlay are tightly combined at the interface transition zone (ITZ), the interface exhibits good slant shear performance, and the measured interfacial shear strength could reach 19.4 MPa with C40 substrate and 21.8 MPa with C50 substrate. In addition, the microstructure and composition of the ITZ, the possible interfacial failure modes, and the load-carrying mechanism of the interface under compression–shear force are revealed. The high interface roughness and the substrate strength have positive influence on the shear strength, and greatly affect the prone failure mode and the load-slip characteristic.

Abstract Image

普通混凝土 (NC) 与超高性能混凝土 (UHPC) 之间的界面剪切破坏行为
超高性能混凝土(UHPC)具有优异的机械性能和耐久性,是一种很有前途的用于加固现有普通混凝土(NC)结构的材料。本文通过斜剪切试验和 SEM(扫描电子显微镜)可视化试验研究了 NC-UHPC 界面的剪切破坏行为,并考虑了基材强度和界面粗糙处理的影响。由于 NC 基材和 UHPC 覆盖层在界面过渡区(ITZ)紧密结合,界面表现出良好的斜剪切性能,C40 基材的界面剪切强度测量值达到 19.4 兆帕,C50 基材的界面剪切强度测量值达到 21.8 兆帕。此外,还揭示了 ITZ 的微观结构和成分、可能的界面破坏模式以及界面在压缩-剪切力作用下的承载机制。高界面粗糙度和基底强度对剪切强度有积极影响,并对易失效模式和载荷滑移特性有很大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Concrete Structures and Materials
International Journal of Concrete Structures and Materials CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
6.30
自引率
5.90%
发文量
61
审稿时长
13 weeks
期刊介绍: The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on Properties and performance of concrete and concrete structures Advanced and improved experimental techniques Latest modelling methods Possible improvement and enhancement of concrete properties Structural and microstructural characterization Concrete applications Fiber reinforced concrete technology Concrete waste management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信