A nonlocal finite-dimensional integrable system related to the nonlocal mKdV equation

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Xue Wang, Dianlou Du, Hui Wang
{"title":"A nonlocal finite-dimensional integrable system related to the nonlocal mKdV equation","authors":"Xue Wang,&nbsp;Dianlou Du,&nbsp;Hui Wang","doi":"10.1134/S0040577924030024","DOIUrl":null,"url":null,"abstract":"<p> We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie–Poisson structure. By a coordinate transformation, the nonlocal Lie–Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrödinger (NNLS) equation. According to the Hamilton–Jacobi theory, we obtain the action–angle-type coordinates and the inversion problems related to Lie–Poisson Hamiltonian systems. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924030024","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a hierarchy of the nonlocal mKdV (NmKdV) equation. Based on a constraint, we obtain nonlocal finite-dimensional integrable systems in a Lie–Poisson structure. By a coordinate transformation, the nonlocal Lie–Poisson Hamiltonian systems are reduced to nonlocal canonical Hamiltonian systems in the standard symplectic structure. Moreover, using the nonlocal finite-dimensional integrable systems, we give parametric solutions of the NmKdV equation and the generalized nonlocal nonlinear Schrödinger (NNLS) equation. According to the Hamilton–Jacobi theory, we obtain the action–angle-type coordinates and the inversion problems related to Lie–Poisson Hamiltonian systems.

与非局部 mKdV 方程相关的非局部有限维可积分系统
摘要 我们提出了非局部 mKdV(NmKdV)方程的层次结构。基于约束条件,我们得到了Lie-Poisson结构的非局部有限维可积分系统。通过坐标变换,非局部的列-泊松哈密顿系统被还原为标准交映结构中的非局部典型哈密顿系统。此外,利用非局部有限维可积分系统,我们给出了 NmKdV 方程和广义非局部非线性薛定谔方程(NNLS)的参数解。根据汉密尔顿-雅可比理论,我们得到了与列-泊松汉密尔顿系统相关的作用角型坐标和反演问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信