{"title":"A dual‐channel transferable RUL prediction method integrated with Bayesian deep learning and domain adaptation for rolling bearings","authors":"Junyu Guo, Zhiyuan Wang, Yulai Yang, Yuhang Song, Jia‐Lun Wan, Cheng‐Geng Huang","doi":"10.1002/qre.3539","DOIUrl":null,"url":null,"abstract":"Many deep learning methods typically assume that the marginal probability distribution between the training and testing bearing data is similar or the same. However, the probability distribution of rolling bearings may deviate significantly under diverse working conditions. To address the above limitations, a novel transferable remaining useful life (RUL) prediction method integrated with Bayesian deep learning and unsupervised domain adaptation (DA) is proposed. First, the signal alignment is executed on the data after the first prediction time to maintain the same granularity and scale across both source and target domains. Second, the multi‐domain features are extracted and sent into the dual‐channel Transformer network (DCTN) incorporating the convolutional block attention module (CBAM) to adequately exploit the abundant degradation information. Then, the DA module is incorporated into the model to mitigate the distribution discrepancies of the extracted high‐level merged features between the source and target domains. Finally, by applying the variational inference method, the DCTN‐CBAM is extended to the Bayesian deep neural network, and the RUL prediction and its corresponding confidence intervals can be conveniently derived. In addition, the generalization capability and effectiveness are validated through six bidirectional transfer RUL prediction tasks across two rolling bearing datasets. The experimental results demonstrate that it could provide a more reliable RUL prediction and efficiently account for the prediction uncertainty.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"25 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3539","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Many deep learning methods typically assume that the marginal probability distribution between the training and testing bearing data is similar or the same. However, the probability distribution of rolling bearings may deviate significantly under diverse working conditions. To address the above limitations, a novel transferable remaining useful life (RUL) prediction method integrated with Bayesian deep learning and unsupervised domain adaptation (DA) is proposed. First, the signal alignment is executed on the data after the first prediction time to maintain the same granularity and scale across both source and target domains. Second, the multi‐domain features are extracted and sent into the dual‐channel Transformer network (DCTN) incorporating the convolutional block attention module (CBAM) to adequately exploit the abundant degradation information. Then, the DA module is incorporated into the model to mitigate the distribution discrepancies of the extracted high‐level merged features between the source and target domains. Finally, by applying the variational inference method, the DCTN‐CBAM is extended to the Bayesian deep neural network, and the RUL prediction and its corresponding confidence intervals can be conveniently derived. In addition, the generalization capability and effectiveness are validated through six bidirectional transfer RUL prediction tasks across two rolling bearing datasets. The experimental results demonstrate that it could provide a more reliable RUL prediction and efficiently account for the prediction uncertainty.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.