The W ( E 6 ) $W(E_6)$ -invariant birational geometry of the moduli space of marked cubic surfaces

Pub Date : 2024-03-22 DOI:10.1002/mana.202300459
Nolan Schock
{"title":"The \n \n \n W\n (\n \n E\n 6\n \n )\n \n $W(E_6)$\n -invariant birational geometry of the moduli space of marked cubic surfaces","authors":"Nolan Schock","doi":"10.1002/mana.202300459","DOIUrl":null,"url":null,"abstract":"<p>The moduli space <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>=</mo>\n <mi>Y</mi>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>6</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$Y = Y(E_6)$</annotation>\n </semantics></math> of marked cubic surfaces is one of the most classical moduli spaces in algebraic geometry, dating back to the nineteenth-century work of Cayley and Salmon. Modern interest in <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> was restored in the 1980s by Naruki's explicit construction of a <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>6</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$W(E_6)$</annotation>\n </semantics></math>-equivariant smooth projective compactification <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>¯</mo>\n </mover>\n <annotation>${\\overline{Y}}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>, and in the 2000s by Hacking, Keel, and Tevelev's construction of the Kollár–Shepherd-Barron–Alexeev (KSBA) stable pair compactification <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n <annotation>${\\widetilde{Y}}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> as a natural sequence of blowups of <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>¯</mo>\n </mover>\n <annotation>${\\overline{Y}}$</annotation>\n </semantics></math>. We describe generators for the cones of <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>6</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$W(E_6)$</annotation>\n </semantics></math>-invariant effective divisors and curves of both <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>¯</mo>\n </mover>\n <annotation>${\\overline{Y}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n <annotation>${\\widetilde{Y}}$</annotation>\n </semantics></math>. For Naruki's compactification <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>¯</mo>\n </mover>\n <annotation>${\\overline{Y}}$</annotation>\n </semantics></math>, we further obtain a complete stable base locus decomposition of the <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>6</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$W(E_6)$</annotation>\n </semantics></math>-invariant effective cone, and as a consequence find several new <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>6</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$W(E_6)$</annotation>\n </semantics></math>-equivariant birational models of <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>¯</mo>\n </mover>\n <annotation>${\\overline{Y}}$</annotation>\n </semantics></math>. Furthermore, we fully describe the log minimal model program for the KSBA compactification <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n <annotation>${\\widetilde{Y}}$</annotation>\n </semantics></math>, with respect to the divisor <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n </msub>\n <mo>+</mo>\n <mi>c</mi>\n <mi>B</mi>\n <mo>+</mo>\n <mi>d</mi>\n <mi>E</mi>\n </mrow>\n <annotation>$K_{{\\widetilde{Y}}} + cB + dE$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> is the boundary and <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> is the sum of the divisors parameterizing marked cubic surfaces with Eckardt points.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300459","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The moduli space Y = Y ( E 6 ) $Y = Y(E_6)$ of marked cubic surfaces is one of the most classical moduli spaces in algebraic geometry, dating back to the nineteenth-century work of Cayley and Salmon. Modern interest in Y $Y$ was restored in the 1980s by Naruki's explicit construction of a W ( E 6 ) $W(E_6)$ -equivariant smooth projective compactification Y ¯ ${\overline{Y}}$ of Y $Y$ , and in the 2000s by Hacking, Keel, and Tevelev's construction of the Kollár–Shepherd-Barron–Alexeev (KSBA) stable pair compactification Y ${\widetilde{Y}}$ of Y $Y$ as a natural sequence of blowups of Y ¯ ${\overline{Y}}$ . We describe generators for the cones of W ( E 6 ) $W(E_6)$ -invariant effective divisors and curves of both Y ¯ ${\overline{Y}}$ and Y ${\widetilde{Y}}$ . For Naruki's compactification Y ¯ ${\overline{Y}}$ , we further obtain a complete stable base locus decomposition of the W ( E 6 ) $W(E_6)$ -invariant effective cone, and as a consequence find several new W ( E 6 ) $W(E_6)$ -equivariant birational models of Y ¯ ${\overline{Y}}$ . Furthermore, we fully describe the log minimal model program for the KSBA compactification Y ${\widetilde{Y}}$ , with respect to the divisor K Y + c B + d E $K_{{\widetilde{Y}}} + cB + dE$ , where B $B$ is the boundary and E $E$ is the sum of the divisors parameterizing marked cubic surfaces with Eckardt points.

Abstract Image

分享
查看原文
有标记立方曲面模空间的 W(E6)$W(E_6)$ 不变双曲几何学
有标记立方曲面的模空间是代数几何中最经典的模空间之一,可以追溯到 19 世纪 Cayley 和 Salmon 的研究。20 世纪 80 年代,Naruki 明确地构造了Ⅳ的-等变光滑投影致密化;2000 年,Hacking、Keel 和 Tevelev 将Ⅳ的 Kollár-Shepherd-Barron-Alexeev(KSBA)稳定对致密化构造为Ⅳ的自然炸裂序列,从而恢复了现代人对Ⅳ的兴趣。 我们描述了Ⅳ和Ⅳ的-不变有效除数和曲线的锥的生成器。对于成木紧凑化 ,我们进一步得到了-不变有效锥的完整稳定基点分解,并因此找到了.的几个新的-等价双变模型。 此外,我们完全描述了 KSBA 紧凑化 的对数最小模型程序,关于除数,这里是边界,是参数化带埃卡特点的标记立方曲面的除数之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信