Faber Series for $$L^2$$ Holomorphic One-Forms on Riemann Surfaces with Boundary

Pub Date : 2024-03-22 DOI:10.1007/s40315-024-00529-4
Eric Schippers, Mohammad Shirazi
{"title":"Faber Series for $$L^2$$ Holomorphic One-Forms on Riemann Surfaces with Boundary","authors":"Eric Schippers, Mohammad Shirazi","doi":"10.1007/s40315-024-00529-4","DOIUrl":null,"url":null,"abstract":"<p>Consider a compact surface <span>\\(\\mathscr {R}\\)</span> with distinguished points <span>\\(z_1,\\ldots ,z_n\\)</span> and conformal maps <span>\\(f_k\\)</span> from the unit disk into non-overlapping quasidisks on <span>\\(\\mathscr {R}\\)</span> taking 0 to <span>\\(z_k\\)</span>. Let <span>\\(\\Sigma \\)</span> be the Riemann surface obtained by removing the closures of the images of <span>\\(f_k\\)</span> from <span>\\(\\mathscr {R}\\)</span>. We define forms which are meromorphic on <span>\\(\\mathscr {R}\\)</span> with poles only at <span>\\(z_1,\\ldots ,z_n\\)</span>, which we call Faber–Tietz forms. These are analogous to Faber polynomials in the sphere. We show that any <span>\\(L^2\\)</span> holomorphic one-form on <span>\\(\\Sigma \\)</span> is uniquely expressible as a series of Faber–Tietz forms. This series converges both in <span>\\(L^2(\\Sigma )\\)</span> and uniformly on compact subsets of <span>\\(\\Sigma \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00529-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a compact surface \(\mathscr {R}\) with distinguished points \(z_1,\ldots ,z_n\) and conformal maps \(f_k\) from the unit disk into non-overlapping quasidisks on \(\mathscr {R}\) taking 0 to \(z_k\). Let \(\Sigma \) be the Riemann surface obtained by removing the closures of the images of \(f_k\) from \(\mathscr {R}\). We define forms which are meromorphic on \(\mathscr {R}\) with poles only at \(z_1,\ldots ,z_n\), which we call Faber–Tietz forms. These are analogous to Faber polynomials in the sphere. We show that any \(L^2\) holomorphic one-form on \(\Sigma \) is uniquely expressible as a series of Faber–Tietz forms. This series converges both in \(L^2(\Sigma )\) and uniformly on compact subsets of \(\Sigma \).

分享
查看原文
有边界黎曼曲面上 $$L^2$$ Holomorphic One-Forms 的 Faber 系列
考虑一个紧凑曲面(\(\mathscr {R}\)),它有区分点(z_1,\ldots ,z_n\)和从单位盘到\(\mathscr {R}\)上的非重叠准星的保角映射(f_k\),取0到(z_k\)。让 \(\Sigma \)成为从 \(\mathscr {R}\) 上移除 \(f_k\) 的图像的闭包得到的黎曼曲面。我们定义了在\(\mathscr {R}\)上只在\(z_1,\ldots ,z_n\)处有极点的非定常形式,我们称之为法布尔-铁茨形式。它们类似于球面上的法布尔多项式。我们证明了任何在\(\Sigma \)上的\(L^2\)全形一元形式都可以唯一地表达为法伯-铁茨形式的数列。这个数列既在\(L^2(\Sigma)\)中收敛,又在\(\Sigma\)的紧凑子集上均匀收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信