{"title":"Application of Cobalt Hydroxide Nano-Sheets as Electrocatalyst Material for Measuring of Glucose in Blood Samples from Athletes","authors":"","doi":"10.1007/s11244-024-01928-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this work, a convenient, low cost and fast detection of glucose (GO) in human blood has been investigated. For this purpose, a non-enzymatic sensor based on the hydrothermally prepared cobalt hydroxide nano-catalyst was fabricated and used for analysis of GO level in biological fluids. The electrochemical ability of the modified glassy carbon electrode (GCE) for GO measuring was studied by cyclic voltammetry and chronoamperometry assays. The chronoamperometric data indicate that the proposed sensing platform is capable of measuring changes in GO levels within a linear range of 1.5–460 µM and low detection limit of 0.8 µM. The cobalt hydroxide modified GCE depicts a significant resistant versus common interfering species such as fructose, cholesterol, ascorbic acid, <span>l</span>-cysteine and uric acid. In addition, the suggested GO sensor was employed for determination of analyte concentration in blood samples from athletes. This novel platform is characterized by its low price, simple operation, high anti-interference property and high sensitivity. The experimental results proved that the cobalt hydroxide modified GCE is an effective strategy for non-enzymatic GO detection in clinical applications.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11244_2024_1928_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"58 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01928-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a convenient, low cost and fast detection of glucose (GO) in human blood has been investigated. For this purpose, a non-enzymatic sensor based on the hydrothermally prepared cobalt hydroxide nano-catalyst was fabricated and used for analysis of GO level in biological fluids. The electrochemical ability of the modified glassy carbon electrode (GCE) for GO measuring was studied by cyclic voltammetry and chronoamperometry assays. The chronoamperometric data indicate that the proposed sensing platform is capable of measuring changes in GO levels within a linear range of 1.5–460 µM and low detection limit of 0.8 µM. The cobalt hydroxide modified GCE depicts a significant resistant versus common interfering species such as fructose, cholesterol, ascorbic acid, l-cysteine and uric acid. In addition, the suggested GO sensor was employed for determination of analyte concentration in blood samples from athletes. This novel platform is characterized by its low price, simple operation, high anti-interference property and high sensitivity. The experimental results proved that the cobalt hydroxide modified GCE is an effective strategy for non-enzymatic GO detection in clinical applications.
摘要 在这项工作中,研究了一种方便、低成本和快速检测人体血液中葡萄糖(GO)的方法。为此,制备了一种基于水热法制备的氢氧化钴纳米催化剂的非酶传感器,并将其用于分析生物液体中的 GO 含量。通过循环伏安法和时变测定法研究了改性玻璃碳电极(GCE)测量 GO 的电化学能力。时变数据表明,拟议的传感平台能够在 1.5-460 µM 的线性范围内测量 GO 含量的变化,检测限低至 0.8 µM。氢氧化钴修饰的 GCE 对果糖、胆固醇、抗坏血酸、L-半胱氨酸和尿酸等常见干扰物具有明显的抗性。此外,所建议的 GO 传感器还被用于测定运动员血液样本中的分析物浓度。这种新型平台具有价格低廉、操作简单、抗干扰性强和灵敏度高等特点。实验结果证明,氢氧化钴修饰的 GCE 是临床应用中非酶促 GO 检测的有效策略。 图表摘要
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.