Numerical Simulation and Sensitivity Analysis Using RSM on Natural Convective Heat Exchanger Containing Hybrid Nanofluids

4区 工程技术 Q1 Mathematics
Saiful Islam, Md. Noor-A-Alam Siddiki, Md. Shahinur Islam
{"title":"Numerical Simulation and Sensitivity Analysis Using RSM on Natural Convective Heat Exchanger Containing Hybrid Nanofluids","authors":"Saiful Islam, Md. Noor-A-Alam Siddiki, Md. Shahinur Islam","doi":"10.1155/2024/2834556","DOIUrl":null,"url":null,"abstract":"This work presents a numerical analysis for exploring heat transfer phenomena in an enclosed cavity using magnetohydrodynamics natural convection. Because of the numerous real-world applications of nanofluids and hybrid nanofluids in industrial and thermal engineering developments, hybrid nanofluids are used as fluid mediums in the fluid field. A hexagonal-shaped heat exchanger is taken with two circular surfaces along the middle part. The upright circular surface acts as a homogeneous heat source, while the lower circular surface functions as a heat sink. The remaining portions of the adjacent walls are thermally insulated. The copper (Cu) and titanium dioxide (TiO<sub>2</sub>) nanoparticles are suspended into water to make a hybrid nanofluid. For solving the corresponding governing equations, the weighted-residual finite element method is applied. To explain the major outcomes, isotherms, streamlines, and many others 2D and 3D contour plots are involved graphically with a physical explanation for different magnitudes of significant parameters: Rayleigh number <span><svg height=\"13.8595pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 33.234 13.8595\" width=\"33.234pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.738,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,17.025,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,25.603,0)\"></path></g></svg><span></span><svg height=\"13.8595pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"36.8161838 -11.5914 25.994 13.8595\" width=\"25.994pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,36.866,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,45.017,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,55.229,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"13.8595pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"66.44218380000001 -11.5914 22.215 13.8595\" width=\"22.215pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,66.492,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,72.732,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,79.019,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,83.965,0)\"></path></g></svg>,</span></span> Hartmann number <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 22.001 11.5564\" width=\"22.001pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.37,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"25.5831838 -9.28833 28.505 11.5564\" width=\"28.505pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.633,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,36.295,0)\"><use xlink:href=\"#g113-98\"></use></g><g transform=\"matrix(.013,0,0,-0.013,46.507,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"57.7201838 -9.28833 23.562 11.5564\" width=\"23.562pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,57.77,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,64.01,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,70.25,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,76.49,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span></span> and nanoparticle volume fraction <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 22.001 12.7178\" width=\"22.001pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.37,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"25.5831838 -9.28833 18.609 12.7178\" width=\"18.609pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.633,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,36.611,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"47.8241838 -9.28833 26.503 12.7178\" width=\"26.503pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.874,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,54.114,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,57.078,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,63.318,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,69.558,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span></span> The novelty of this work is to apply response surface methodology on the natural convective hybrid nanofluid model, to visualize 2D and 3D effects, and to study the sensitivity of independent parameters on response function. Due to the outstanding thermal properties of the hybrid nanofluid, the addition of Cu and TiO<sub>2</sub> nanoparticles into H<sub>2</sub>O develops the heat transfer rate to 35.85% rather than base fluid. Moreover, a larger magnitude of <i>Ra</i> and the accumulation of mixture nanoparticles result in the thermal actuation of a hybrid nanofluid. With greater magnetic impact, an opposite response is exhibited.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2834556","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a numerical analysis for exploring heat transfer phenomena in an enclosed cavity using magnetohydrodynamics natural convection. Because of the numerous real-world applications of nanofluids and hybrid nanofluids in industrial and thermal engineering developments, hybrid nanofluids are used as fluid mediums in the fluid field. A hexagonal-shaped heat exchanger is taken with two circular surfaces along the middle part. The upright circular surface acts as a homogeneous heat source, while the lower circular surface functions as a heat sink. The remaining portions of the adjacent walls are thermally insulated. The copper (Cu) and titanium dioxide (TiO2) nanoparticles are suspended into water to make a hybrid nanofluid. For solving the corresponding governing equations, the weighted-residual finite element method is applied. To explain the major outcomes, isotherms, streamlines, and many others 2D and 3D contour plots are involved graphically with a physical explanation for different magnitudes of significant parameters: Rayleigh number , Hartmann number , and nanoparticle volume fraction . The novelty of this work is to apply response surface methodology on the natural convective hybrid nanofluid model, to visualize 2D and 3D effects, and to study the sensitivity of independent parameters on response function. Due to the outstanding thermal properties of the hybrid nanofluid, the addition of Cu and TiO2 nanoparticles into H2O develops the heat transfer rate to 35.85% rather than base fluid. Moreover, a larger magnitude of Ra and the accumulation of mixture nanoparticles result in the thermal actuation of a hybrid nanofluid. With greater magnetic impact, an opposite response is exhibited.
利用 RSM 对含有混合纳米流体的自然对流换热器进行数值模拟和敏感性分析
本研究利用磁流体力学自然对流对封闭空腔中的传热现象进行了数值分析。由于纳米流体和混合纳米流体在工业和热工程发展中的大量实际应用,混合纳米流体被用作流体领域的流体介质。一个六边形热交换器的中间部分有两个圆形表面。直立的圆形表面充当均匀热源,而较低的圆形表面则充当散热器。相邻壁的其余部分为隔热材料。铜(Cu)和二氧化钛(TiO2)纳米颗粒悬浮在水中,形成混合纳米流体。为了求解相应的控制方程,采用了加权残差有限元法。为了解释主要结果,等温线、流线和许多其他二维和三维等高线图都以图形形式出现,并对不同大小的重要参数进行了物理解释:雷利数、哈特曼数和纳米粒子体积分数。这项工作的新颖之处在于将响应面方法应用于自然对流混合纳米流体模型,将二维和三维效应可视化,并研究独立参数对响应函数的敏感性。由于混合纳米流体具有出色的热性能,在 H2O 中加入 Cu 和 TiO2 纳米粒子后,传热率比基础流体提高了 35.85%。此外,更大的 Ra 值和混合纳米粒子的积累会导致混合纳米流体的热驱动。随着磁场影响的增大,则会出现相反的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Problems in Engineering
Mathematical Problems in Engineering 工程技术-工程:综合
CiteScore
4.00
自引率
0.00%
发文量
2853
审稿时长
4.2 months
期刊介绍: Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信