Global Stein theorem on Hardy spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Bonami, S. Grellier, B. F. Sehba
{"title":"Global Stein theorem on Hardy spaces","authors":"A. Bonami,&nbsp;S. Grellier,&nbsp;B. F. Sehba","doi":"10.1007/s10476-024-00003-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(f\\)</span> be an integrable function which has integral <span>\\(0\\)</span> on <span>\\(\\mathbb{R}^n \\)</span>.\nWhat is the largest condition on <span>\\(|f|\\)</span> that guarantees that <span>\\(f\\)</span> is in the Hardy space\n<span>\\(\\mathcal{H}^1(\\mathbb{R}^n)\\)</span>? When <span>\\(f\\)</span> is compactly supported, it is well-known that the largest condition\non <span>\\(|f|\\)</span> is the fact that <span>\\(|f|\\in L \\log L(\\mathbb{R}^n) \\)</span>. We consider the same kind of\nproblem here, but without any condition on the support. We do so for <span>\\(\\mathcal{H}^1(\\mathbb{R}^n)\\)</span>,\nas well as for the Hardy space <span>\\(\\mathcal{H}_{\\log}(\\mathbb{R}^n)\\)</span> which appears in the study of pointwise\nproducts of functions in <span>\\(\\mathcal{H}^1(\\mathbb{R}^n)\\)</span> and in its dual BMO.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00003-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(f\) be an integrable function which has integral \(0\) on \(\mathbb{R}^n \). What is the largest condition on \(|f|\) that guarantees that \(f\) is in the Hardy space \(\mathcal{H}^1(\mathbb{R}^n)\)? When \(f\) is compactly supported, it is well-known that the largest condition on \(|f|\) is the fact that \(|f|\in L \log L(\mathbb{R}^n) \). We consider the same kind of problem here, but without any condition on the support. We do so for \(\mathcal{H}^1(\mathbb{R}^n)\), as well as for the Hardy space \(\mathcal{H}_{\log}(\mathbb{R}^n)\) which appears in the study of pointwise products of functions in \(\mathcal{H}^1(\mathbb{R}^n)\) and in its dual BMO.

哈代空间上的全局斯坦因定理
让 \(f\) 是一个可积分函数,它在\(\mathbb{R}^n \)上有积分 \(0\),那么保证 \(f\) 在 Hardy 空间(\mathcal{H}^1(\mathbb{R}^n)\)中的\(|f|\)的最大条件是什么?当 \(f\) 紧凑支撑时,众所周知,对 \(|f|\) 最大的条件就是 \(|f|\in L \log L(\mathbb{R}^n) \)。我们在这里考虑的是同类问题,但不需要任何支持条件。我们对 \(\mathcal{H}^1(\mathbb{R}^n)\) 以及 Hardy 空间 \(\mathcal{H}_{\log}(\mathbb{R}^n)\)这样做,后者出现在 \(\mathcal{H}^1(\mathbb{R}^n)\) 及其对偶 BMO 中函数的点异积研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信