{"title":"High Boost DC-DC Converter Based on Switched Inductor, Switched Capacitor and Voltage Multiplier Cell","authors":"","doi":"10.1007/s40998-024-00702-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>An integrated switched-capacitor (SC), voltage multiplier (VM) cell and switched-inductor (SL) based high gain DC-DC converter is put forward here. This suggested converter boosts the low voltage obtained from fuel cell or solar photo voltaic (PV) to make it suitable for grid integration. This converter is highly efficient with a gain of 89 when operated with 0.8 duty ratio. The suggested converter switches and diodes are under low voltage stress. In order to validate simulation results, a 100 W, 200 V prototype model is set up in the laboratory for 24 V input. According to the experimental findings, the intended converter is highly effective, owing to its high gain, low switching stress and low duty cycle.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00702-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An integrated switched-capacitor (SC), voltage multiplier (VM) cell and switched-inductor (SL) based high gain DC-DC converter is put forward here. This suggested converter boosts the low voltage obtained from fuel cell or solar photo voltaic (PV) to make it suitable for grid integration. This converter is highly efficient with a gain of 89 when operated with 0.8 duty ratio. The suggested converter switches and diodes are under low voltage stress. In order to validate simulation results, a 100 W, 200 V prototype model is set up in the laboratory for 24 V input. According to the experimental findings, the intended converter is highly effective, owing to its high gain, low switching stress and low duty cycle.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.