{"title":"Weak-type regularity for the Bergman projection over N-dimensional classical Hartogs triangles","authors":"Yi Li, Mengjiao Wang","doi":"10.1186/s13660-024-03119-z","DOIUrl":null,"url":null,"abstract":"In this paper, we study the weak-type regularity of the Bergman projection on n-dimensional classical Hartogs triangles. We extend the results of Huo–Wick on the 2-dimensional classical Hartogs triangle to the n-dimensional classical Hartogs triangle and show that the Bergman projection is of weak type at the upper endpoint of $L^{q}$ -boundedness but not of weak type at the lower endpoint of $L^{q}$ -boundedness.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03119-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the weak-type regularity of the Bergman projection on n-dimensional classical Hartogs triangles. We extend the results of Huo–Wick on the 2-dimensional classical Hartogs triangle to the n-dimensional classical Hartogs triangle and show that the Bergman projection is of weak type at the upper endpoint of $L^{q}$ -boundedness but not of weak type at the lower endpoint of $L^{q}$ -boundedness.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.