Projection-free computation of robust controllable sets with constrained zonotopes

Abraham P. Vinod, Avishai Weiss, Stefano Di Cairano
{"title":"Projection-free computation of robust controllable sets with constrained zonotopes","authors":"Abraham P. Vinod, Avishai Weiss, Stefano Di Cairano","doi":"arxiv-2403.13730","DOIUrl":null,"url":null,"abstract":"We study the problem of computing robust controllable sets for discrete-time\nlinear systems with additive uncertainty. We propose a tractable and scalable\napproach to inner- and outer-approximate robust controllable sets using\nconstrained zonotopes, when the additive uncertainty set is a symmetric,\nconvex, and compact set. Our least-squares-based approach uses novel\nclosed-form approximations of the Pontryagin difference between a constrained\nzonotopic minuend and a symmetric, convex, and compact subtrahend. Unlike\nexisting approaches, our approach does not rely on convex optimization solvers,\nand is projection-free for ellipsoidal and zonotopic uncertainty sets. We also\npropose a least-squares-based approach to compute a convex, polyhedral\nouter-approximation to constrained zonotopes, and characterize sufficient\nconditions under which all these approximations are exact. We demonstrate the\ncomputational efficiency and scalability of our approach in several case\nstudies, including the design of abort-safe rendezvous trajectories for a\nspacecraft in near-rectilinear halo orbit under uncertainty. Our approach can\ninner-approximate a 20-step robust controllable set for a 100-dimensional\nlinear system in under 15 seconds on a standard computer.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"9 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of computing robust controllable sets for discrete-time linear systems with additive uncertainty. We propose a tractable and scalable approach to inner- and outer-approximate robust controllable sets using constrained zonotopes, when the additive uncertainty set is a symmetric, convex, and compact set. Our least-squares-based approach uses novel closed-form approximations of the Pontryagin difference between a constrained zonotopic minuend and a symmetric, convex, and compact subtrahend. Unlike existing approaches, our approach does not rely on convex optimization solvers, and is projection-free for ellipsoidal and zonotopic uncertainty sets. We also propose a least-squares-based approach to compute a convex, polyhedral outer-approximation to constrained zonotopes, and characterize sufficient conditions under which all these approximations are exact. We demonstrate the computational efficiency and scalability of our approach in several case studies, including the design of abort-safe rendezvous trajectories for a spacecraft in near-rectilinear halo orbit under uncertainty. Our approach can inner-approximate a 20-step robust controllable set for a 100-dimensional linear system in under 15 seconds on a standard computer.
无投影计算鲁棒性可控集与受约束等值线
我们研究了计算具有可加不确定性的离散时间线性系统的鲁棒可控集问题。当加性不确定性集是一个对称、凸和紧凑的集时,我们提出了一种利用受约束等值线计算内近似和外近似鲁棒可控集的可行且可扩展的方法。我们基于最小二乘法的方法使用了新颖的封闭形式逼近受约束区元最小端与对称、凸、紧凑子端之间的庞特里亚金差。与现有方法不同的是,我们的方法不依赖于凸优化求解器,而且对于椭圆不确定性集和众向不确定性集是无投影的。我们还提出了一种基于最小二乘法的方法,用于计算受约束等值线的多面体外凸近似,并描述了所有这些近似都是精确的充分条件。我们在几个案例研究中证明了我们方法的计算效率和可扩展性,包括在不确定条件下为近直角光环轨道上的航天器设计安全的交会轨迹。我们的方法可以在标准计算机上用不到 15 秒的时间为一个 100 维线性系统估算出 20 步鲁棒性可控集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信