Jinjie Ma, Mingzu Zhang, Chenxi Li, Hengji Qiao, Yang Fan
{"title":"A Note of Reliability Analysis of SM-λ in Folded-Crossed Hypercube with Conditional Faults","authors":"Jinjie Ma, Mingzu Zhang, Chenxi Li, Hengji Qiao, Yang Fan","doi":"10.1142/s0129054124500035","DOIUrl":null,"url":null,"abstract":"<p>The fault tolerance of an interconnection network of parallel and distributed systems can be evaluated by various topological parameters of its underlying graph <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span>, with strong Menger edge connectivity being a vital parameter in this regard. A connected graph <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is called strongly Menger edge connected (SM-<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi></math></span><span></span>) if it connects any pair of vertices <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi></math></span><span></span> and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi></math></span><span></span> with <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo>min</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>u</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></math></span><span></span> number of edge-disjoint paths. Under the uniform distribution of faults in a large interconnection network, it is improbable that each faulty edge incident to a vertex will occur simultaneously. Thus, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>-strongly Menger edge connected of order <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> was introduced in 2018 by He <i>et al.</i> Here, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is called as <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>-strongly Menger edge connected of order <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>, if <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo stretchy=\"false\">−</mo><mi>F</mi></math></span><span></span> remains SM-<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi></math></span><span></span>, where <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span> is an arbitrary edge set in a graph <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> with <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>F</mi><mo>|</mo><mo>≤</mo><mi>m</mi></math></span><span></span> and the minimum degree of the remaining graph <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">−</mo><mi>F</mi><mo stretchy=\"false\">)</mo><mo>≥</mo><mi>t</mi></math></span><span></span>. The largest <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> keeping the property of <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo stretchy=\"false\">−</mo><mi>F</mi></math></span><span></span> being SM-<span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi></math></span><span></span> is denoted as <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><msubsup><mrow><mi>m</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>t</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Among variants of hypercube, the <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-dimensional folded-crossed hypercube <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mi>C</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> attracts attention in recent years. In this paper, we focus on calculating the exact value of the maximum conditional edge-fault-tolerant number of order <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> of <span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mi>C</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><msubsup><mrow><mi>m</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>t</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>F</mi><mi>C</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">−</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> for two integers <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi><mo stretchy=\"false\">−</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00030.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>.</p>","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124500035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The fault tolerance of an interconnection network of parallel and distributed systems can be evaluated by various topological parameters of its underlying graph , with strong Menger edge connectivity being a vital parameter in this regard. A connected graph is called strongly Menger edge connected (SM-) if it connects any pair of vertices and with number of edge-disjoint paths. Under the uniform distribution of faults in a large interconnection network, it is improbable that each faulty edge incident to a vertex will occur simultaneously. Thus, -strongly Menger edge connected of order was introduced in 2018 by He et al. Here, is called as -strongly Menger edge connected of order , if remains SM-, where is an arbitrary edge set in a graph with and the minimum degree of the remaining graph . The largest keeping the property of being SM- is denoted as . Among variants of hypercube, the -dimensional folded-crossed hypercube attracts attention in recent years. In this paper, we focus on calculating the exact value of the maximum conditional edge-fault-tolerant number of order of , for two integers and .
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing