A Note of Reliability Analysis of SM-λ in Folded-Crossed Hypercube with Conditional Faults

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jinjie Ma, Mingzu Zhang, Chenxi Li, Hengji Qiao, Yang Fan
{"title":"A Note of Reliability Analysis of SM-λ in Folded-Crossed Hypercube with Conditional Faults","authors":"Jinjie Ma, Mingzu Zhang, Chenxi Li, Hengji Qiao, Yang Fan","doi":"10.1142/s0129054124500035","DOIUrl":null,"url":null,"abstract":"<p>The fault tolerance of an interconnection network of parallel and distributed systems can be evaluated by various topological parameters of its underlying graph <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span>, with strong Menger edge connectivity being a vital parameter in this regard. A connected graph <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is called strongly Menger edge connected (SM-<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi></math></span><span></span>) if it connects any pair of vertices <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi></math></span><span></span> and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi></math></span><span></span> with <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo>min</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>u</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></math></span><span></span> number of edge-disjoint paths. Under the uniform distribution of faults in a large interconnection network, it is improbable that each faulty edge incident to a vertex will occur simultaneously. Thus, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>-strongly Menger edge connected of order <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> was introduced in 2018 by He <i>et al.</i> Here, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is called as <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>-strongly Menger edge connected of order <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>, if <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo stretchy=\"false\">−</mo><mi>F</mi></math></span><span></span> remains SM-<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi></math></span><span></span>, where <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span> is an arbitrary edge set in a graph <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> with <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>F</mi><mo>|</mo><mo>≤</mo><mi>m</mi></math></span><span></span> and the minimum degree of the remaining graph <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">−</mo><mi>F</mi><mo stretchy=\"false\">)</mo><mo>≥</mo><mi>t</mi></math></span><span></span>. The largest <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> keeping the property of <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo stretchy=\"false\">−</mo><mi>F</mi></math></span><span></span> being SM-<span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>λ</mi></math></span><span></span> is denoted as <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><msubsup><mrow><mi>m</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>t</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Among variants of hypercube, the <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-dimensional folded-crossed hypercube <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mi>C</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> attracts attention in recent years. In this paper, we focus on calculating the exact value of the maximum conditional edge-fault-tolerant number of order <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> of <span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mi>C</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><msubsup><mrow><mi>m</mi></mrow><mrow><mi>λ</mi></mrow><mrow><mi>t</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>F</mi><mi>C</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">−</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> for two integers <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi><mo stretchy=\"false\">−</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00030.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>.</p>","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124500035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The fault tolerance of an interconnection network of parallel and distributed systems can be evaluated by various topological parameters of its underlying graph G, with strong Menger edge connectivity being a vital parameter in this regard. A connected graph G is called strongly Menger edge connected (SM-λ) if it connects any pair of vertices u and v with min{dG(u),dG(v)} number of edge-disjoint paths. Under the uniform distribution of faults in a large interconnection network, it is improbable that each faulty edge incident to a vertex will occur simultaneously. Thus, m-strongly Menger edge connected of order t was introduced in 2018 by He et al. Here, G is called as m-strongly Menger edge connected of order t, if GF remains SM-λ, where F is an arbitrary edge set in a graph G with |F|m and the minimum degree of the remaining graph δ(GF)t. The largest m keeping the property of GF being SM-λ is denoted as smλt(G). Among variants of hypercube, the n-dimensional folded-crossed hypercube FCQn attracts attention in recent years. In this paper, we focus on calculating the exact value of the maximum conditional edge-fault-tolerant number of order t of FCQn, smλt(FCQn)=2t(n+1t)(n+1) for two integers 1tn2 and n3.

带条件故障的折叠交叉超立方体中 SM-λ 的可靠性分析说明
并行和分布式系统互连网络的容错性可通过其底层图 G 的各种拓扑参数来评估,而强门格尔边连接性是这方面的一个重要参数。如果连通图 G 连接任意一对顶点 u 和 v 的边缘相交路径数最小为{dG(u),dG(v)},则称其为强门格尔边缘连接图(SM-λ)。在大型互连网络的故障均匀分布情况下,顶点的每条故障边不可能同时出现。因此,He等人在2018年提出了阶数为t的m-strongly Menger edge connected,这里,如果G-F保持SM-λ,则称G为阶数为t的m-strongly Menger edge connected,其中F是图G中的任意边集,|F|≤m,且剩余图的最小度δ(G-F)≥t。保持 G-F 是 SM-λ 的最大 m 表示为 smλt(G)。在超立方体的变体中,n 维折叠交叉超立方体 FCQn 近年来备受关注。本文主要计算 FCQn 的最大条件边缘容错数 t 阶的精确值,即 smλt(FCQn)=2t(n+1-t)-(n+1),对于两个整数 1≤t≤n-2 和 n≥3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信