V. L. Stolyarova, S. I. Lopatin, V. A. Vorozhtcov, A. V. Fedorova, A. A. Selyutin, A. L. Shilov
{"title":"Mass Spectrometric Thermodynamic Study of the Fe2O3–TiO2 System","authors":"V. L. Stolyarova, S. I. Lopatin, V. A. Vorozhtcov, A. V. Fedorova, A. A. Selyutin, A. L. Shilov","doi":"10.1134/s0018151x23060111","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>High-temperature differential mass spectrometry was used to study the vaporization processes and thermodynamic properties of samples of the Fe<sub>2</sub>O<sub>3</sub>–TiO<sub>2</sub> system containing 25, 35, and 45 mol. % iron oxide. As shown earlier, at temperatures above 1400 K, Fe<sub>2</sub>O<sub>3</sub>, losing oxygen, turns into FeO. Therefore, in this article, a mass spectrometric thermodynamic study of the FeO–TiO<sub>2</sub> system was carried out at a temperature of 1760 K. The composition and partial pressures of vapor, as well as the values of FeO activities and excess Gibbs energy in the FeO–TiO<sub>2</sub> system were determined. Using the Wilson polynomial made it possible for the first time to estimate the mixing enthalpy and excess entropy in the FeO–TiO<sub>2</sub> system at 1760 K. The thermodynamic properties of melts of the FeO–TiO<sub>2</sub> system at 1760 K were modeled using the generalized lattice theory of associated solutions, and the relative numbers of bonds of various types in the model melt lattice were calculated, indicating the preferential formation of Fe–O–Ti bonds at a FeO content of 55 mol %. It is shown that at a temperature of 1760 K, the found values of the excess Gibbs energy in the FeO–TiO<sub>2</sub> system are evidence of negative deviations from the ideality.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23060111","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature differential mass spectrometry was used to study the vaporization processes and thermodynamic properties of samples of the Fe2O3–TiO2 system containing 25, 35, and 45 mol. % iron oxide. As shown earlier, at temperatures above 1400 K, Fe2O3, losing oxygen, turns into FeO. Therefore, in this article, a mass spectrometric thermodynamic study of the FeO–TiO2 system was carried out at a temperature of 1760 K. The composition and partial pressures of vapor, as well as the values of FeO activities and excess Gibbs energy in the FeO–TiO2 system were determined. Using the Wilson polynomial made it possible for the first time to estimate the mixing enthalpy and excess entropy in the FeO–TiO2 system at 1760 K. The thermodynamic properties of melts of the FeO–TiO2 system at 1760 K were modeled using the generalized lattice theory of associated solutions, and the relative numbers of bonds of various types in the model melt lattice were calculated, indicating the preferential formation of Fe–O–Ti bonds at a FeO content of 55 mol %. It is shown that at a temperature of 1760 K, the found values of the excess Gibbs energy in the FeO–TiO2 system are evidence of negative deviations from the ideality.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.