Tom Lütjen;Fabian Schönfeld;Alice Oberacker;Johannes Leuschner;Maximilian Schmidt;Anne Wald;Tobias Kluth
{"title":"Learning-Based Approaches for Reconstructions With Inexact Operators in nanoCT Applications","authors":"Tom Lütjen;Fabian Schönfeld;Alice Oberacker;Johannes Leuschner;Maximilian Schmidt;Anne Wald;Tobias Kluth","doi":"10.1109/TCI.2024.3380319","DOIUrl":null,"url":null,"abstract":"Imaging problems such as the one in nanoCT require the solution of an inverse problem, where it is often taken for granted that the forward operator, i.e., the underlying physical model, is properly known. In the present work we address the problem where the forward model is inexact due to stochastic or deterministic deviations during the measurement process. We particularly investigate the performance of non-learned iterative reconstruction methods dealing with inexactness and learned reconstruction schemes, which are based on U-Nets and conditional invertible neural networks. The latter also provide the opportunity for uncertainty quantification. A synthetic large data set in line with a typical nanoCT setting is provided and extensive numerical experiments are conducted evaluating the proposed methods.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"522-534"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10477519/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Imaging problems such as the one in nanoCT require the solution of an inverse problem, where it is often taken for granted that the forward operator, i.e., the underlying physical model, is properly known. In the present work we address the problem where the forward model is inexact due to stochastic or deterministic deviations during the measurement process. We particularly investigate the performance of non-learned iterative reconstruction methods dealing with inexactness and learned reconstruction schemes, which are based on U-Nets and conditional invertible neural networks. The latter also provide the opportunity for uncertainty quantification. A synthetic large data set in line with a typical nanoCT setting is provided and extensive numerical experiments are conducted evaluating the proposed methods.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.