M. N. Shamsiev, M. Kh. Khairullin, P. E. Morozov, V. R. Gadil’shina, A. I. Abdullin, A. V. Nasybullin
{"title":"Numerical Method For Solving the Inverse Problem of Nonisothermal Filtration in Double-Porosity Media","authors":"M. N. Shamsiev, M. Kh. Khairullin, P. E. Morozov, V. R. Gadil’shina, A. I. Abdullin, A. V. Nasybullin","doi":"10.1134/s0018151x23050164","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A mathematical model of nonisothermal filtration of a fluid into a medium with double porosity is constructed. The influence of the filtration and thermophysical parameters of a fractured porous formation on the temperature and pressure in the bottom of a vertical oil well due to production is studied. Based on the proposed model, a computational algorithm for interpreting the results of the thermohydrodynamic studies of vertical wells is developed. Measurements of the pressure and temperature in the bottom of the well after its start-up are used as the initial information.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23050164","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A mathematical model of nonisothermal filtration of a fluid into a medium with double porosity is constructed. The influence of the filtration and thermophysical parameters of a fractured porous formation on the temperature and pressure in the bottom of a vertical oil well due to production is studied. Based on the proposed model, a computational algorithm for interpreting the results of the thermohydrodynamic studies of vertical wells is developed. Measurements of the pressure and temperature in the bottom of the well after its start-up are used as the initial information.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.