{"title":"New QSTR models to evaluation of imidazolium- and pyridinium-contained ionic liquids toxicity","authors":"Ivan Semenyuta, Vasyl Kovalishyn, Diana Hodyna, Yuliia Startseva, Sergiy Rogalsky, Larysa Metelytsia","doi":"10.1016/j.comtox.2024.100309","DOIUrl":null,"url":null,"abstract":"<div><p>We present machine learning studies devoted to the creation of predictive models for toxicity evaluation of imidazolium- and pyridinium-containing ionic liquids. New created predictive models were developed using the OCHEM. The predictive ability of the models was tested by cross-validation, giving a coefficient of determination q<sup>2</sup> = 0.77–0.82. The models were applied to screen a virtual chemical library to the toxicity of ILs in Danio rerio and Daphnia magna bioassays. Models were used to predict toxicity for 25 ILs, which were then synthesized and tested in vivo. The in vivo toxicity studies found that D. magna is a more sensitive aquatic test organism than D. rerio – 67 % of the studied ILs are classified as extremely toxic with an LC<sub>50</sub> range from 0.005 to 0.01 mg/l. At the same time, only one IL 1-dodecylpyridinium bromide with an LC<sub>50</sub> of 0.08 mg/l is classified as extremely toxic, and 76 % are classified as slightly and moderately toxic compounds using D. rerio as a test organism. The most toxic ILs 5 and 19 were docked into the human AChE active center and demonstrated calculated binding energy values −9.5 and −9.3 kcal/mol that is comparable with the complexation of the human AChE inhibitor Donepezil, which provides insight into the potential molecular mechanisms of ILs toxicity. The created QSTR models are a successful tool for the toxicity analysis of new promising ILs. QSTR models demonstrated not only high predictive indicators but also a high percentage of correctly predicted toxicity values in vivo studies.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present machine learning studies devoted to the creation of predictive models for toxicity evaluation of imidazolium- and pyridinium-containing ionic liquids. New created predictive models were developed using the OCHEM. The predictive ability of the models was tested by cross-validation, giving a coefficient of determination q2 = 0.77–0.82. The models were applied to screen a virtual chemical library to the toxicity of ILs in Danio rerio and Daphnia magna bioassays. Models were used to predict toxicity for 25 ILs, which were then synthesized and tested in vivo. The in vivo toxicity studies found that D. magna is a more sensitive aquatic test organism than D. rerio – 67 % of the studied ILs are classified as extremely toxic with an LC50 range from 0.005 to 0.01 mg/l. At the same time, only one IL 1-dodecylpyridinium bromide with an LC50 of 0.08 mg/l is classified as extremely toxic, and 76 % are classified as slightly and moderately toxic compounds using D. rerio as a test organism. The most toxic ILs 5 and 19 were docked into the human AChE active center and demonstrated calculated binding energy values −9.5 and −9.3 kcal/mol that is comparable with the complexation of the human AChE inhibitor Donepezil, which provides insight into the potential molecular mechanisms of ILs toxicity. The created QSTR models are a successful tool for the toxicity analysis of new promising ILs. QSTR models demonstrated not only high predictive indicators but also a high percentage of correctly predicted toxicity values in vivo studies.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs