Hongyu Chen, Dangliang Liu, Jianting Guo, Abhishek Aditham, Yiming Zhou, Jiakun Tian, Shuchen Luo, Jingyi Ren, Alvin Hsu, Jiahao Huang, Franklin Kostas, Mingrui Wu, David R. Liu, Xiao Wang
{"title":"Branched chemically modified poly(A) tails enhance the translation capacity of mRNA","authors":"Hongyu Chen, Dangliang Liu, Jianting Guo, Abhishek Aditham, Yiming Zhou, Jiakun Tian, Shuchen Luo, Jingyi Ren, Alvin Hsu, Jiahao Huang, Franklin Kostas, Mingrui Wu, David R. Liu, Xiao Wang","doi":"10.1038/s41587-024-02174-7","DOIUrl":null,"url":null,"abstract":"Although messenger RNA (mRNA) has proved effective as a vaccine, its potential as a general therapeutic modality is limited by its instability and low translation capacity. To increase the duration and level of protein expression from mRNA, we designed and synthesized topologically and chemically modified mRNAs with multiple synthetic poly(A) tails. Here we demonstrate that the optimized multitailed mRNA yielded ~4.7–19.5-fold higher luminescence signals than the control mRNA from 24 to 72 h post transfection in cellulo and 14 days detectable signal versus <7 days signal from the control in vivo. We further achieve efficient multiplexed genome editing of the clinically relevant genes Pcsk9 and Angptl3 in mouse liver at a minimal mRNA dosage. Taken together, these results provide a generalizable approach to synthesize capped branched mRNA with markedly enhanced translation capacity. mRNA with engineered poly(A) tails produces prolonged higher levels of protein.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"43 2","pages":"194-203"},"PeriodicalIF":41.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41587-024-02174-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although messenger RNA (mRNA) has proved effective as a vaccine, its potential as a general therapeutic modality is limited by its instability and low translation capacity. To increase the duration and level of protein expression from mRNA, we designed and synthesized topologically and chemically modified mRNAs with multiple synthetic poly(A) tails. Here we demonstrate that the optimized multitailed mRNA yielded ~4.7–19.5-fold higher luminescence signals than the control mRNA from 24 to 72 h post transfection in cellulo and 14 days detectable signal versus <7 days signal from the control in vivo. We further achieve efficient multiplexed genome editing of the clinically relevant genes Pcsk9 and Angptl3 in mouse liver at a minimal mRNA dosage. Taken together, these results provide a generalizable approach to synthesize capped branched mRNA with markedly enhanced translation capacity. mRNA with engineered poly(A) tails produces prolonged higher levels of protein.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.