Autorepression of yeast Hsp70 cochaperones by intramolecular interactions involving their J-domains

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Mathieu E. Rebeaud , Satyam Tiwari , Bruno Fauvet , Adelaïde Mohr , Pierre Goloubinoff , Paolo De Los Rios
{"title":"Autorepression of yeast Hsp70 cochaperones by intramolecular interactions involving their J-domains","authors":"Mathieu E. Rebeaud ,&nbsp;Satyam Tiwari ,&nbsp;Bruno Fauvet ,&nbsp;Adelaïde Mohr ,&nbsp;Pierre Goloubinoff ,&nbsp;Paolo De Los Rios","doi":"10.1016/j.cstres.2024.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1′s ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1–4 chaperones that are the most abundant Hsp70s in the yeast cytosol.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 338-348"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000609/pdfft?md5=3840b17933f941a28bef6070677044c7&pid=1-s2.0-S1355814524000609-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524000609","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1′s ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1–4 chaperones that are the most abundant Hsp70s in the yeast cytosol.

酵母 Hsp70 协同伴侣素通过涉及其 J-结构域的分子内相互作用实现自动抑制。
Hsp70 合子控制着所有含 ATP 细胞区的蛋白质平衡。J-结构域蛋白(JDPs)与Hsp70共同进化,触发ATP水解,并催化上载各种需要伴侣蛋白进行结构修饰的底物多肽。在这里,我们测量了主要的酵母细胞质 Hsp70 Ssa1 在其最丰富的 JDPs Sis1 和 Ydj1 以及两个交换突变体(其中的 J-domains 被互换)存在下的蛋白质分解和重折叠活性。观察到的这四种构建体与 Ssa1 相互合作的不同之处,以及观察到的它们结合折叠错误底物和触发 Ssa1 ATPase 的内在能力,都表明这些蛋白质的 J-结构域和剩余 C 端片段之间存在尚未定性的分子内动态相互作用。综合来看,这些数据表明 A 型和 B 型 JDPs 分子内的相互作用具有自动调节作用,它们可能是为了减少酵母细胞质中最丰富的 Hsp70s--Ssa1-4伴侣蛋白耗费能量的 ATPase 循环而进化而来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信