Patrik Macko, Tomáš Derka, Zuzana Čiamporová-Zaťovičová, Michal Grabowski, Fedor Čiampor Jr
{"title":"Detailed DNA barcoding of mayflies in a small European country proved how far we are from having comprehensive barcode reference libraries","authors":"Patrik Macko, Tomáš Derka, Zuzana Čiamporová-Zaťovičová, Michal Grabowski, Fedor Čiampor Jr","doi":"10.1111/1755-0998.13954","DOIUrl":null,"url":null,"abstract":"<p>Mayflies (Ephemeroptera) are among the crucial water and habitat quality bioindicators. However, despite their intensive long-term use in various studies, more reliable mayfly DNA barcode data have been produced in a negligible number of countries, and only ~40% of European species had been barcoded with less than 50% of families covered. Despite being carried out in a small area, our study presents the second-most species-rich DNA reference library of mayflies from Europe and the first comprehensive view from an important biodiversity hotspot such as the Western Carpathians. Within 1153 sequences, 76 morphologically determined species were recorded and added to the Barcode of Life Data System (BOLD) database. All obtained sequences were assigned to 97 BINs, 11 of which were unique and three represented species never barcoded before. Sequences of 16 species with high intraspecific variability were divided into 40 BINs, confirming the presence of cryptic lineages. Due to the low interspecific divergence and the non-existing barcoding gap, sequences of six species were assigned to three shared BINs. Delimitation analyses resulted in 79 and 107 putative species respectively. Bayesian and maximum-likelihood phylogenies confirmed the monophyly of almost all species and complexes of cryptic taxa and proved that DNA barcoding distinguishes almost all studied mayfly species. We have shown that it is still sufficient to thoroughly investigate the fauna of a small but geographically important area to enrich global databases greatly. In particular, the insights gained here transcend the local context and may have broader implications for advancing barcoding efforts.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 5","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13954","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mayflies (Ephemeroptera) are among the crucial water and habitat quality bioindicators. However, despite their intensive long-term use in various studies, more reliable mayfly DNA barcode data have been produced in a negligible number of countries, and only ~40% of European species had been barcoded with less than 50% of families covered. Despite being carried out in a small area, our study presents the second-most species-rich DNA reference library of mayflies from Europe and the first comprehensive view from an important biodiversity hotspot such as the Western Carpathians. Within 1153 sequences, 76 morphologically determined species were recorded and added to the Barcode of Life Data System (BOLD) database. All obtained sequences were assigned to 97 BINs, 11 of which were unique and three represented species never barcoded before. Sequences of 16 species with high intraspecific variability were divided into 40 BINs, confirming the presence of cryptic lineages. Due to the low interspecific divergence and the non-existing barcoding gap, sequences of six species were assigned to three shared BINs. Delimitation analyses resulted in 79 and 107 putative species respectively. Bayesian and maximum-likelihood phylogenies confirmed the monophyly of almost all species and complexes of cryptic taxa and proved that DNA barcoding distinguishes almost all studied mayfly species. We have shown that it is still sufficient to thoroughly investigate the fauna of a small but geographically important area to enrich global databases greatly. In particular, the insights gained here transcend the local context and may have broader implications for advancing barcoding efforts.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.