{"title":"A framework to support the application of the OECD guidance documents on (Q)SAR model validation and prediction assessment for regulatory decisions","authors":"Christopher Barber, Crina Heghes, Laura Johnston","doi":"10.1016/j.comtox.2024.100305","DOIUrl":null,"url":null,"abstract":"<div><p>Advances in the development and application of in silico models in toxicology has been recognised by two OECD guidance documents (69: Guidance Document On The Validation Of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models and 386: (Q)SAR Assessment Framework: Guidance for the regulatory assessment of (Q)SAR models, predictions, and results based on multiple predictions) published in 2007 and 2023 respectively. The former outlines criteria for appropriate model validation, whilst the latter provides guidance around assessing predictions derived from them. The concepts and criteria described within these guidelines have been used to establish a framework to support both model builders and those applying them to support regulatory decisions. Herein we demonstrate how to meet those criteria and propose where further guidance is essential for ensuring the consistent, confident, and safe application of in silico models in support of regulatory decisions.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"30 ","pages":"Article 100305"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in the development and application of in silico models in toxicology has been recognised by two OECD guidance documents (69: Guidance Document On The Validation Of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models and 386: (Q)SAR Assessment Framework: Guidance for the regulatory assessment of (Q)SAR models, predictions, and results based on multiple predictions) published in 2007 and 2023 respectively. The former outlines criteria for appropriate model validation, whilst the latter provides guidance around assessing predictions derived from them. The concepts and criteria described within these guidelines have been used to establish a framework to support both model builders and those applying them to support regulatory decisions. Herein we demonstrate how to meet those criteria and propose where further guidance is essential for ensuring the consistent, confident, and safe application of in silico models in support of regulatory decisions.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs