Curating retrospective multimodal and longitudinal data for community cohorts at risk for lung cancer.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Thomas Z Li, Kaiwen Xu, Neil C Chada, Heidi Chen, Michael Knight, Sanja Antic, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko
{"title":"Curating retrospective multimodal and longitudinal data for community cohorts at risk for lung cancer.","authors":"Thomas Z Li, Kaiwen Xu, Neil C Chada, Heidi Chen, Michael Knight, Sanja Antic, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko","doi":"10.3233/CBM-230340","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Large community cohorts are useful for lung cancer research, allowing for the analysis of risk factors and development of predictive models.</p><p><strong>Objective: </strong>A robust methodology for (1) identifying lung cancer and pulmonary nodules diagnoses as well as (2) associating multimodal longitudinal data with these events from electronic health record (EHRs) is needed to optimally curate cohorts at scale.</p><p><strong>Methods: </strong>In this study, we leveraged (1) SNOMED concepts to develop ICD-based decision rules for building a cohort that captured lung cancer and pulmonary nodules and (2) clinical knowledge to define time windows for collecting longitudinal imaging and clinical concepts. We curated three cohorts with clinical data and repeated imaging for subjects with pulmonary nodules from our Vanderbilt University Medical Center.</p><p><strong>Results: </strong>Our approach achieved an estimated sensitivity 0.930 (95% CI: [0.879, 0.969]), specificity of 0.996 (95% CI: [0.989, 1.00]), positive predictive value of 0.979 (95% CI: [0.959, 1.000]), and negative predictive value of 0.987 (95% CI: [0.976, 0.994]) for distinguishing lung cancer from subjects with SPNs.</p><p><strong>Conclusion: </strong>This work represents a general strategy for high-throughput curation of multi-modal longitudinal cohorts at risk for lung cancer from routinely collected EHRs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CBM-230340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Large community cohorts are useful for lung cancer research, allowing for the analysis of risk factors and development of predictive models.

Objective: A robust methodology for (1) identifying lung cancer and pulmonary nodules diagnoses as well as (2) associating multimodal longitudinal data with these events from electronic health record (EHRs) is needed to optimally curate cohorts at scale.

Methods: In this study, we leveraged (1) SNOMED concepts to develop ICD-based decision rules for building a cohort that captured lung cancer and pulmonary nodules and (2) clinical knowledge to define time windows for collecting longitudinal imaging and clinical concepts. We curated three cohorts with clinical data and repeated imaging for subjects with pulmonary nodules from our Vanderbilt University Medical Center.

Results: Our approach achieved an estimated sensitivity 0.930 (95% CI: [0.879, 0.969]), specificity of 0.996 (95% CI: [0.989, 1.00]), positive predictive value of 0.979 (95% CI: [0.959, 1.000]), and negative predictive value of 0.987 (95% CI: [0.976, 0.994]) for distinguishing lung cancer from subjects with SPNs.

Conclusion: This work represents a general strategy for high-throughput curation of multi-modal longitudinal cohorts at risk for lung cancer from routinely collected EHRs.

为有肺癌风险的社区队列收集回顾性多模态和纵向数据。
背景:大型社区队列对肺癌研究非常有用,可用于分析风险因素和开发预测模型:大型社区队列对肺癌研究非常有用,可用于分析风险因素和开发预测模型:目标:需要一种可靠的方法来(1)识别肺癌和肺结节诊断,以及(2)将电子健康记录(EHR)中的多模态纵向数据与这些事件联系起来,以优化大规模队列:在这项研究中,我们利用(1)SNOMED 概念来制定基于 ICD 的决策规则,以建立一个捕获肺癌和肺结节的队列;(2)临床知识来定义收集纵向成像和临床概念的时间窗口。我们为范德比尔特大学医学中心的肺结节受试者建立了三个具有临床数据和重复成像的队列:在区分肺癌和 SPNs 患者方面,我们的方法估计灵敏度为 0.930(95% CI:[0.879, 0.969]),特异性为 0.996(95% CI:[0.989, 1.00]),阳性预测值为 0.979(95% CI:[0.959, 1.000]),阴性预测值为 0.987(95% CI:[0.976, 0.994]):这项工作代表了从日常收集的电子病历中高通量整理肺癌风险多模式纵向队列的一般策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信