{"title":"The use of real-world data for clinical investigation of effectiveness in drug development.","authors":"Peijin Wang, Shein-Chung Chow","doi":"10.1080/10543406.2024.2330215","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing interest in leveraging real-world data (RWD) to support effectiveness evaluations for new indications, new target populations, and post-market performance, the United States Food and Drug Administration has published several guidance documents on RWD sources and real-world studies (RWS) to assist sponsors in generating credible real-world evidence (RWE). Meanwhile, the randomized controlled trial (RCT) remains the gold standard in drug evaluation. Along this line, we propose a hybrid two-stage adaptive design to evaluate effectiveness based on evidence from both RCT and RWS. At the first stage, a typical non-inferiority test is conducted using RCT data to test for not-ineffectiveness. Once not-ineffectiveness is established, the study proceeds to the second stage to conduct an RWS and test for effectiveness using integrated information from RCT and RWD. The composite likelihood approach is implemented as a down-weighing strategy to account for the impact of high variability in RWS population. An optimal sample size determination procedure for RCT and RWS is introduced, aiming to achieve the minimal expected sample size. Through extensive numerical study, the proposed design demonstrates the ability to control type I error inflation in most cases and consistently maintain statistical power above the desired level. In general, this RCT/RWS hybrid two-stage adaptive design is beneficial for effectiveness evaluations in drug development, especially for oncology and rare diseases.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-24"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2330215","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing interest in leveraging real-world data (RWD) to support effectiveness evaluations for new indications, new target populations, and post-market performance, the United States Food and Drug Administration has published several guidance documents on RWD sources and real-world studies (RWS) to assist sponsors in generating credible real-world evidence (RWE). Meanwhile, the randomized controlled trial (RCT) remains the gold standard in drug evaluation. Along this line, we propose a hybrid two-stage adaptive design to evaluate effectiveness based on evidence from both RCT and RWS. At the first stage, a typical non-inferiority test is conducted using RCT data to test for not-ineffectiveness. Once not-ineffectiveness is established, the study proceeds to the second stage to conduct an RWS and test for effectiveness using integrated information from RCT and RWD. The composite likelihood approach is implemented as a down-weighing strategy to account for the impact of high variability in RWS population. An optimal sample size determination procedure for RCT and RWS is introduced, aiming to achieve the minimal expected sample size. Through extensive numerical study, the proposed design demonstrates the ability to control type I error inflation in most cases and consistently maintain statistical power above the desired level. In general, this RCT/RWS hybrid two-stage adaptive design is beneficial for effectiveness evaluations in drug development, especially for oncology and rare diseases.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.