{"title":"DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs.","authors":"Wei Li, Yuanjun Wang, Yu Liu","doi":"10.1093/dmfr/twae014","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Panoramic radiography is one of the most commonly used diagnostic modalities in dentistry. Automatic recognition of panoramic radiography helps dentists in decision support. In order to improve the accuracy of the detection of dental structural problems in panoramic radiographs, we have improved the You Only Look Once (YOLO) network and verified the feasibility of this new method in aiding the detection of dental problems.</p><p><strong>Methods: </strong>We propose a Deformable Multi-scale Adaptive Fusion Net (DMAF-Net) to detect 5 types of dental situations (impacted teeth, missing teeth, implants, crown restorations, and root canal-treated teeth) in panoramic radiography by improving the YOLO network. In DMAF-Net, we propose different modules to enhance the feature extraction capability of the network as well as to acquire high-level features at different scales, while using adaptively spatial feature fusion to solve the problem of scale mismatches of different feature layers, which effectively improves the detection performance. In order to evaluate the detection performance of the models, we compare the experimental results of different models in the test set and select the optimal results of the models by calculating the average of different metrics in each category as the evaluation criteria.</p><p><strong>Results: </strong>About 1474 panoramic radiographs were divided into training, validation, and test sets in the ratio of 7:2:1. In the test set, the average precision and recall of DMAF-Net are 92.7% and 87.6%, respectively; the mean Average Precision (mAP0.5 and mAP[0.5:0.95]) are 91.8% and 63.7%, respectively.</p><p><strong>Conclusions: </strong>The proposed DMAF-Net model improves existing deep learning models and achieves automatic detection of tooth structure problems in panoramic radiographs. This new method has great potential for new computer-aided diagnostic, teaching, and clinical applications in the future.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"296-307"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twae014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Panoramic radiography is one of the most commonly used diagnostic modalities in dentistry. Automatic recognition of panoramic radiography helps dentists in decision support. In order to improve the accuracy of the detection of dental structural problems in panoramic radiographs, we have improved the You Only Look Once (YOLO) network and verified the feasibility of this new method in aiding the detection of dental problems.
Methods: We propose a Deformable Multi-scale Adaptive Fusion Net (DMAF-Net) to detect 5 types of dental situations (impacted teeth, missing teeth, implants, crown restorations, and root canal-treated teeth) in panoramic radiography by improving the YOLO network. In DMAF-Net, we propose different modules to enhance the feature extraction capability of the network as well as to acquire high-level features at different scales, while using adaptively spatial feature fusion to solve the problem of scale mismatches of different feature layers, which effectively improves the detection performance. In order to evaluate the detection performance of the models, we compare the experimental results of different models in the test set and select the optimal results of the models by calculating the average of different metrics in each category as the evaluation criteria.
Results: About 1474 panoramic radiographs were divided into training, validation, and test sets in the ratio of 7:2:1. In the test set, the average precision and recall of DMAF-Net are 92.7% and 87.6%, respectively; the mean Average Precision (mAP0.5 and mAP[0.5:0.95]) are 91.8% and 63.7%, respectively.
Conclusions: The proposed DMAF-Net model improves existing deep learning models and achieves automatic detection of tooth structure problems in panoramic radiographs. This new method has great potential for new computer-aided diagnostic, teaching, and clinical applications in the future.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X