A flat FLRW dark energy model in f(Q,C)-gravity theory with observational constraints

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Anirudh Pradhan, Archana Dixit, M. Zeyauddin, S. Krishnannair
{"title":"A flat FLRW dark energy model in f(Q,C)-gravity theory with observational constraints","authors":"Anirudh Pradhan, Archana Dixit, M. Zeyauddin, S. Krishnannair","doi":"10.1142/s0219887824501676","DOIUrl":null,"url":null,"abstract":"<p>In the recently suggested modified non-metricity gravity theory with boundary term in a flat FLRW spacetime universe, dark energy scenarios of cosmological models are examined in this study. An arbitrary function, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo>,</mo><mi>C</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>Q</mi><mo stretchy=\"false\">+</mo><mi>α</mi><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, has been taken into consideration, where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi></math></span><span></span> is the non-metricity scalar, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> is the boundary term denoted by <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo>=</mo><mover accent=\"true\"><mrow><mi>R</mi></mrow><mo>̈</mo></mover><mo stretchy=\"false\">−</mo><mi>Q</mi></math></span><span></span>, and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is the model parameter, for the action that is quadratic in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span>. The Hubble function <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo stretchy=\"false\">(</mo><mi>z</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo stretchy=\"false\">[</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><mi>z</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span><span></span>, where <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> is the current value of the Hubble constant and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span> are arbitrary parameters with <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span><span></span>, has been used to examine the dark energy characteristics of the model. We discovered a transit phase expanding universe model that is both decelerated in the past and accelerated in the present, and we discovered that the dark energy equation of state (EoS) <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ω</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>d</mi><mi>e</mi><mo stretchy=\"false\">)</mo></mrow></msup></math></span><span></span> behaves as <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>≤</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>d</mi><mi>e</mi><mo stretchy=\"false\">)</mo></mrow></msup><mo>&lt;</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. The Om diagnostic analysis reveals the quintessence behavior in the present and the cosmological constant scenario in the late-time universe. Finally, we calculated the universe’s current age, which was found to be quite similar to recent data.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"45 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824501676","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the recently suggested modified non-metricity gravity theory with boundary term in a flat FLRW spacetime universe, dark energy scenarios of cosmological models are examined in this study. An arbitrary function, f(Q,C)=Q+αC2, has been taken into consideration, where Q is the non-metricity scalar, C is the boundary term denoted by C=R̈Q, and α is the model parameter, for the action that is quadratic in C. The Hubble function H(z)=H0[c1(1+z)n+c2]12, where H0 is the current value of the Hubble constant and n,c1 and c2 are arbitrary parameters with c1+c2=1, has been used to examine the dark energy characteristics of the model. We discovered a transit phase expanding universe model that is both decelerated in the past and accelerated in the present, and we discovered that the dark energy equation of state (EoS) ω(de) behaves as (1ω(de)<2). The Om diagnostic analysis reveals the quintessence behavior in the present and the cosmological constant scenario in the late-time universe. Finally, we calculated the universe’s current age, which was found to be quite similar to recent data.

具有观测约束的 f(Q,C)引力理论中的平面 FLRW 暗能量模型
本研究考察了最近提出的带边界项的修正非度量引力理论在平坦的 FLRW 时空宇宙中的宇宙学模型暗能量情景。其中 Q 是非度量标量,C 是边界项,用 C=R̈-Q 表示,α 是模型参数。哈勃函数 H(z)=H0[c1(1+z)n+c2]12,其中 H0 是哈勃常数的当前值,n、c1 和 c2 是 c1+c2=1 的任意参数,被用来检验模型的暗能量特征。我们发现了一个过去减速、现在加速的过境相膨胀宇宙模型,并发现暗能量状态方程(EoS)ω(de)表现为(-1≤ω(de)<2)。Om 诊断分析揭示了现在宇宙的五元行为和晚期宇宙的宇宙常数情景。最后,我们计算了宇宙当前的年龄,发现它与最近的数据非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信