Anirudh Pradhan, Archana Dixit, M. Zeyauddin, S. Krishnannair
{"title":"A flat FLRW dark energy model in f(Q,C)-gravity theory with observational constraints","authors":"Anirudh Pradhan, Archana Dixit, M. Zeyauddin, S. Krishnannair","doi":"10.1142/s0219887824501676","DOIUrl":null,"url":null,"abstract":"<p>In the recently suggested modified non-metricity gravity theory with boundary term in a flat FLRW spacetime universe, dark energy scenarios of cosmological models are examined in this study. An arbitrary function, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>Q</mi><mo>,</mo><mi>C</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>Q</mi><mo stretchy=\"false\">+</mo><mi>α</mi><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, has been taken into consideration, where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi></math></span><span></span> is the non-metricity scalar, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> is the boundary term denoted by <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo>=</mo><mover accent=\"true\"><mrow><mi>R</mi></mrow><mo>̈</mo></mover><mo stretchy=\"false\">−</mo><mi>Q</mi></math></span><span></span>, and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is the model parameter, for the action that is quadratic in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span>. The Hubble function <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo stretchy=\"false\">(</mo><mi>z</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo stretchy=\"false\">[</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><mi>z</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span><span></span>, where <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> is the current value of the Hubble constant and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span> are arbitrary parameters with <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span><span></span>, has been used to examine the dark energy characteristics of the model. We discovered a transit phase expanding universe model that is both decelerated in the past and accelerated in the present, and we discovered that the dark energy equation of state (EoS) <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ω</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>d</mi><mi>e</mi><mo stretchy=\"false\">)</mo></mrow></msup></math></span><span></span> behaves as <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>≤</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>d</mi><mi>e</mi><mo stretchy=\"false\">)</mo></mrow></msup><mo><</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. The Om diagnostic analysis reveals the quintessence behavior in the present and the cosmological constant scenario in the late-time universe. Finally, we calculated the universe’s current age, which was found to be quite similar to recent data.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"45 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824501676","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the recently suggested modified non-metricity gravity theory with boundary term in a flat FLRW spacetime universe, dark energy scenarios of cosmological models are examined in this study. An arbitrary function, , has been taken into consideration, where is the non-metricity scalar, is the boundary term denoted by , and is the model parameter, for the action that is quadratic in . The Hubble function , where is the current value of the Hubble constant and and are arbitrary parameters with , has been used to examine the dark energy characteristics of the model. We discovered a transit phase expanding universe model that is both decelerated in the past and accelerated in the present, and we discovered that the dark energy equation of state (EoS) behaves as . The Om diagnostic analysis reveals the quintessence behavior in the present and the cosmological constant scenario in the late-time universe. Finally, we calculated the universe’s current age, which was found to be quite similar to recent data.
期刊介绍:
This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.