{"title":"Thermal and environmental analysis of an infectious medical waste-to-energy","authors":"Chanansith Suvarnabol , Nattaporn Chaiyat","doi":"10.1016/j.scca.2024.100039","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents an infectious medical waste-to-energy (IMWtE) thermal and environmental analysis using combined heat and power (CHP) technology. Steam sterilization can be operated with an infectious medical waste (IMW) of 375 kg/h⋅unit, a maximum per day of 12,000 kg/day for double sterilization units, and a running time of 16 h/day. The CHP system uses a dried IMW of 797 kg/h, generating a power output of 128.98 kW<sub>e</sub>, providing a drying heat of 382.91 kW, and achieving an overall system efficiency of 8.45 %. Results are obtained for a life cycle assessment (LCA) of the IMWtE by CHP system technology. The endpoint effectiveness comprises considerations of human health: 2.83E+01 DALY, ecosystem quality is represented value of: 9.32E+00 Species⋅y, and natural resource value of: 1.08E+06 USD, all of these are fundamentally linked to the utilization of steel, copper, paint, and gypsum. The LCA impacts are primarily due to the operation phase (93 %), with the smaller contribution of the decommissioning phase (4 %), and the construction phase (3 %), respectively.</p></div>","PeriodicalId":101195,"journal":{"name":"Sustainable Chemistry for Climate Action","volume":"4 ","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772826924000026/pdfft?md5=4ac529939dc35f79f0ebb37e7dee9066&pid=1-s2.0-S2772826924000026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for Climate Action","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772826924000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an infectious medical waste-to-energy (IMWtE) thermal and environmental analysis using combined heat and power (CHP) technology. Steam sterilization can be operated with an infectious medical waste (IMW) of 375 kg/h⋅unit, a maximum per day of 12,000 kg/day for double sterilization units, and a running time of 16 h/day. The CHP system uses a dried IMW of 797 kg/h, generating a power output of 128.98 kWe, providing a drying heat of 382.91 kW, and achieving an overall system efficiency of 8.45 %. Results are obtained for a life cycle assessment (LCA) of the IMWtE by CHP system technology. The endpoint effectiveness comprises considerations of human health: 2.83E+01 DALY, ecosystem quality is represented value of: 9.32E+00 Species⋅y, and natural resource value of: 1.08E+06 USD, all of these are fundamentally linked to the utilization of steel, copper, paint, and gypsum. The LCA impacts are primarily due to the operation phase (93 %), with the smaller contribution of the decommissioning phase (4 %), and the construction phase (3 %), respectively.