Active sites and structure regulation of non-radical pathways in N-doped graphene-activated persulfate

IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xue Zhang , Baowei Zhao , Nan Wu
{"title":"Active sites and structure regulation of non-radical pathways in N-doped graphene-activated persulfate","authors":"Xue Zhang ,&nbsp;Baowei Zhao ,&nbsp;Nan Wu","doi":"10.1016/j.catcom.2024.106910","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the non-free radical pathways and active sites of N-doped graphene (N-rGO)-activated peroxymonosulfate (PMS). All as-prepared N-rGO samples could activate PMS and develop non-radical pathways. Graphitic-N sites were the major sites for N-rGO activation of PMS, and their content was positively related to the intensity of non-radical pathways. For sulfamethoxazole (SMX), the degradation rate by NH<sub>3</sub>-rGO-10/PMS and non-radicals within 10 min was 93.66 and 75.34% respectively. In the presence of different anions and different concentrations of humic acid, the removal rate of SMX was still more than 90%.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106910"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000700/pdfft?md5=3b6357ff5701d5084a111e8b6d55b7ed&pid=1-s2.0-S1566736724000700-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000700","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the non-free radical pathways and active sites of N-doped graphene (N-rGO)-activated peroxymonosulfate (PMS). All as-prepared N-rGO samples could activate PMS and develop non-radical pathways. Graphitic-N sites were the major sites for N-rGO activation of PMS, and their content was positively related to the intensity of non-radical pathways. For sulfamethoxazole (SMX), the degradation rate by NH3-rGO-10/PMS and non-radicals within 10 min was 93.66 and 75.34% respectively. In the presence of different anions and different concentrations of humic acid, the removal rate of SMX was still more than 90%.

Abstract Image

N 掺杂石墨烯激活过硫酸盐的活性位点和非辐射途径的结构调控
在本研究中,我们研究了 N-掺杂石墨烯(N-rGO)活化过一硫酸盐(PMS)的非自由基途径和活性位点。所有制备的 N-rGO 样品都能激活 PMS 并形成非自由基途径。石墨化-N位点是N-rGO活化PMS的主要位点,其含量与非辐射途径的强度呈正相关。对于磺胺甲噁唑(SMX),NH-rGO-10/PMS 和非自由基在 10 分钟内的降解率分别为 93.66% 和 75.34%。在存在不同阴离子和不同浓度腐植酸的情况下,SMX 的去除率仍然超过 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Communications
Catalysis Communications 化学-物理化学
CiteScore
6.20
自引率
2.70%
发文量
183
审稿时长
46 days
期刊介绍: Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信