Linear Monte Carlo quadrature with optimal confidence intervals

IF 1.8 2区 数学 Q1 MATHEMATICS
Robert J. Kunsch
{"title":"Linear Monte Carlo quadrature with optimal confidence intervals","authors":"Robert J. Kunsch","doi":"10.1016/j.jco.2024.101851","DOIUrl":null,"url":null,"abstract":"<div><p>We study the numerical integration of functions from isotropic Sobolev spaces <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> using finitely many function evaluations within randomized algorithms, aiming for the smallest possible probabilistic error guarantee <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> at confidence level <span><math><mn>1</mn><mo>−</mo><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. For spaces consisting of continuous functions, non-linear Monte Carlo methods with optimal confidence properties have already been known, in few cases even linear methods that succeed in that respect. In this paper we promote a method called <em>stratified control variates</em> (SCV) and by it show that already linear methods achieve optimal probabilistic error rates in the high smoothness regime without the need to adjust algorithmic parameters to the uncertainty <em>δ</em>. We also analyse a version of SCV in the low smoothness regime where <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> may contain functions with singularities. Here, we observe a polynomial dependence of the error on <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> in contrast to the logarithmic dependence in the high smoothness regime.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000281/pdfft?md5=6b29dfcc17f60ddbf6ee19d289e21700&pid=1-s2.0-S0885064X24000281-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000281","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the numerical integration of functions from isotropic Sobolev spaces Wps([0,1]d) using finitely many function evaluations within randomized algorithms, aiming for the smallest possible probabilistic error guarantee ε>0 at confidence level 1δ(0,1). For spaces consisting of continuous functions, non-linear Monte Carlo methods with optimal confidence properties have already been known, in few cases even linear methods that succeed in that respect. In this paper we promote a method called stratified control variates (SCV) and by it show that already linear methods achieve optimal probabilistic error rates in the high smoothness regime without the need to adjust algorithmic parameters to the uncertainty δ. We also analyse a version of SCV in the low smoothness regime where Wps([0,1]d) may contain functions with singularities. Here, we observe a polynomial dependence of the error on δ1 in contrast to the logarithmic dependence in the high smoothness regime.

具有最佳置信区间的线性蒙特卡罗正交法
我们研究了各向同性 Sobolev 空间 Wps([0,1]d) 中函数的数值积分,使用随机算法中的有限多次函数求值,目标是在置信度为 1-δ∈(0,1) 的情况下,尽可能保证最小的概率误差 ε>0。对于由连续函数组成的空间,具有最佳置信度特性的非线性蒙特卡罗方法早已为人所知,在少数情况下,甚至有线性方法在这方面取得了成功。在本文中,我们推广了一种称为分层控制变量(SCV)的方法,并通过它表明,线性方法在高平稳性机制中已经实现了最佳概率误差率,而无需根据不确定性δ调整算法参数。我们还分析了低平滑度条件下的 SCV 版本,在低平滑度条件下,Wps([0,1]d) 可能包含具有奇点的函数。在这里,我们观察到误差对 δ-1 的多项式依赖性,与高平滑度条件下的对数依赖性形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信