Ronja M. Ebner , Francesca Bulian , Francisco J. Sierro , Tanja J. Kouwenhoven , Paul Th. Meijer
{"title":"A tale of a changing basin - a transient model of the 7.17 event leading to the Messinian Salinity Crisis","authors":"Ronja M. Ebner , Francesca Bulian , Francisco J. Sierro , Tanja J. Kouwenhoven , Paul Th. Meijer","doi":"10.1016/j.margeo.2024.107270","DOIUrl":null,"url":null,"abstract":"<div><p>Before the Messinian Salinity Crisis (MSC) left its imprint on the sediment record of the Mediterranean Sea in the form of evaporites, the basin had already undergone significant changes. At 7.17 Ma, a drop in δ13C values, as well as a basin-wide shift in the abundance of benthic foraminifers, already attest to a sudden change in the Mediterranean conditions.</p><p>This event coincides with an increase in the amplitude of the insolation curve. It thus stands to question whether a change in the freshwater budget or a change in the connection between the Mediterranean Sea and the Atlantic was the driver for this event. Answering this question would not only help to understand the event itself, but might also help to decipher the early dynamics of the MSC.</p><p>With a computational box model, we investigate the response of the Mediterranean Sea to a varying freshwater budget for a wide range of restriction. The results then let us define scenarios in which we analyse how a gradually changing restriction would express itself in the basin dynamics.</p><p>We find that the change in the freshwater budget alone cannot explain the changes that are attributed with the 7.2 event, but coupled with an increase in restriction most differences can be accounted for. Our results also show that a gradual change in restriction can provoke a non-linear response in the behaviour of the basin, which can appear abrupt when happening on a short enough timescale. Such a change would also enhance the influence of said changes in the freshwater budget.</p><p>This tells us that the processes that most likely triggered the Messinian Salinity Crisis started much earlier and incrementally increased the restriction of the Mediterranean Sea.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025322724000549/pdfft?md5=ec873d6ba1f5d191d6f6d43119e0e64e&pid=1-s2.0-S0025322724000549-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724000549","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Before the Messinian Salinity Crisis (MSC) left its imprint on the sediment record of the Mediterranean Sea in the form of evaporites, the basin had already undergone significant changes. At 7.17 Ma, a drop in δ13C values, as well as a basin-wide shift in the abundance of benthic foraminifers, already attest to a sudden change in the Mediterranean conditions.
This event coincides with an increase in the amplitude of the insolation curve. It thus stands to question whether a change in the freshwater budget or a change in the connection between the Mediterranean Sea and the Atlantic was the driver for this event. Answering this question would not only help to understand the event itself, but might also help to decipher the early dynamics of the MSC.
With a computational box model, we investigate the response of the Mediterranean Sea to a varying freshwater budget for a wide range of restriction. The results then let us define scenarios in which we analyse how a gradually changing restriction would express itself in the basin dynamics.
We find that the change in the freshwater budget alone cannot explain the changes that are attributed with the 7.2 event, but coupled with an increase in restriction most differences can be accounted for. Our results also show that a gradual change in restriction can provoke a non-linear response in the behaviour of the basin, which can appear abrupt when happening on a short enough timescale. Such a change would also enhance the influence of said changes in the freshwater budget.
This tells us that the processes that most likely triggered the Messinian Salinity Crisis started much earlier and incrementally increased the restriction of the Mediterranean Sea.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.