[Validation of Optimal Imaging Conditions for Coronary Computed Tomography Angiography Using High-definition Mode and Deep Learning Image Reconstruction Algorithm].

Nihon Hoshasen Gijutsu Gakkai zasshi Pub Date : 2024-05-20 Epub Date: 2024-03-21 DOI:10.6009/jjrt.2024-1353
Nobuo Kitera, Chikako Fujioka, Toru Higaki, Eiji Nishimaru, Kazushi Yokomachi, Yoriaki Matsumoto, Masao Kiguchi, Kazuya Ohashi, Harumasa Kasai, Kazuo Awai
{"title":"[Validation of Optimal Imaging Conditions for Coronary Computed Tomography Angiography Using High-definition Mode and Deep Learning Image Reconstruction Algorithm].","authors":"Nobuo Kitera, Chikako Fujioka, Toru Higaki, Eiji Nishimaru, Kazushi Yokomachi, Yoriaki Matsumoto, Masao Kiguchi, Kazuya Ohashi, Harumasa Kasai, Kazuo Awai","doi":"10.6009/jjrt.2024-1353","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To verify the optimal imaging conditions for coronary computed tomography angiography (CCTA) examinations when using high-definition (HD) mode and deep learning image reconstruction (DLIR) in combination.</p><p><strong>Method: </strong>A chest phantom and an in-house phantom using 3D printer were scanned with a 256-row detector CT scanner. The scan parameters were as follows - acquisition mode: ON (HD mode) and OFF (normal resolution [NR] mode), rotation time: 0.28 s/rotation, beam coverage width: 160 mm, and the radiation dose was adjusted based on CT-AEC. Image reconstruction was performed using ASiR-V (Hybrid-IR), TrueFidelity Image (DLIR), and HD-Standard (HD mode) and Standard (NR mode) reconstruction kernels. The task-based transfer function (TTF) and noise power spectrum (NPS) were measured for image evaluation, and the detectability index (d') was calculated. Visual evaluation was also performed on an in-house coronary phantom.</p><p><strong>Result: </strong>The in-plane TTF was better for the HD mode than for the NR mode, while the z-axis TTF was lower for DLIR than for Hybrid-IR. The NPS values in the high-frequency region were higher for the HD mode compared to those for the NR mode, and the NPS was lower for DLIR than for Hybrid-IR. The combination of HD mode and DLIR showed the best value for in-plane d', whereas the combination of NR mode and DLIR showed the best value for z-axis d'. In the visual evaluation, the combination of NR mode and DLIR showed the best values from a noise index of 45 HU.</p><p><strong>Conclusion: </strong>The optimal combination of HD mode and DLIR depends on the image noise level, and the combination of NR mode and DLIR was the best imaging condition under noisy conditions.</p>","PeriodicalId":74309,"journal":{"name":"Nihon Hoshasen Gijutsu Gakkai zasshi","volume":" ","pages":"499-509"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon Hoshasen Gijutsu Gakkai zasshi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6009/jjrt.2024-1353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To verify the optimal imaging conditions for coronary computed tomography angiography (CCTA) examinations when using high-definition (HD) mode and deep learning image reconstruction (DLIR) in combination.

Method: A chest phantom and an in-house phantom using 3D printer were scanned with a 256-row detector CT scanner. The scan parameters were as follows - acquisition mode: ON (HD mode) and OFF (normal resolution [NR] mode), rotation time: 0.28 s/rotation, beam coverage width: 160 mm, and the radiation dose was adjusted based on CT-AEC. Image reconstruction was performed using ASiR-V (Hybrid-IR), TrueFidelity Image (DLIR), and HD-Standard (HD mode) and Standard (NR mode) reconstruction kernels. The task-based transfer function (TTF) and noise power spectrum (NPS) were measured for image evaluation, and the detectability index (d') was calculated. Visual evaluation was also performed on an in-house coronary phantom.

Result: The in-plane TTF was better for the HD mode than for the NR mode, while the z-axis TTF was lower for DLIR than for Hybrid-IR. The NPS values in the high-frequency region were higher for the HD mode compared to those for the NR mode, and the NPS was lower for DLIR than for Hybrid-IR. The combination of HD mode and DLIR showed the best value for in-plane d', whereas the combination of NR mode and DLIR showed the best value for z-axis d'. In the visual evaluation, the combination of NR mode and DLIR showed the best values from a noise index of 45 HU.

Conclusion: The optimal combination of HD mode and DLIR depends on the image noise level, and the combination of NR mode and DLIR was the best imaging condition under noisy conditions.

[利用高清模式和深度学习图像重建算法验证冠状动脉计算机断层扫描血管造影的最佳成像条件]。
目的:验证结合使用高清(HD)模式和深度学习图像重建(DLIR)时冠状动脉计算机断层扫描(CCTA)检查的最佳成像条件:使用 256 排探测器 CT 扫描仪扫描胸部模型和使用 3D 打印机的内部模型。扫描参数如下--采集模式:ON(高清模式)和OFF(正常分辨率[NR]模式),旋转时间:0.28 秒/转,光束覆盖宽度:160 毫米,辐射剂量根据 CT-AEC 进行调整。使用 ASiR-V(Hybrid-IR)、TrueFidelity Image(DLIR)、HD-Standard(HD 模式)和 Standard(NR 模式)重建核进行图像重建。在图像评估中测量了基于任务的传递函数(TTF)和噪声功率谱(NPS),并计算了可探测性指数(d')。还在内部冠状动脉模型上进行了目测评估:结果:HD 模式的平面内 TTF 优于 NR 模式,而 DLIR 的 Z 轴 TTF 低于 Hybrid-IR。与 NR 模式相比,HD 模式在高频区域的 NPS 值更高,而 DLIR 的 NPS 值低于 Hybrid-IR。HD 模式和 DLIR 的组合显示了平面内 d' 的最佳值,而 NR 模式和 DLIR 的组合则显示了 z 轴 d' 的最佳值。在视觉评估中,从 45 HU 的噪声指数来看,NR 模式和 DLIR 的组合显示出最佳值:高清模式和 DLIR 的最佳组合取决于图像噪声水平,而 NR 模式和 DLIR 的组合是噪声条件下的最佳成像条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信