Application of the UNAIDS Incidence Patterns Model to Determine the Distribution of New HIV Infection in Lagos State, Nigeria.

IF 2.2 Q3 INFECTIOUS DISEASES
Toriola Femi-Adebayo, Monsurat Adeleke, Bisola Adebayo, Temitope Fadiya, Bukola Popoola, Opeyemi Ogundimu, Funmilade O Adepoju, Ayotomiwa Salawu, Oladipupo Fisher, Olusegun Ogboye, Leopold Zekeng
{"title":"Application of the UNAIDS Incidence Patterns Model to Determine the Distribution of New HIV Infection in Lagos State, Nigeria.","authors":"Toriola Femi-Adebayo, Monsurat Adeleke, Bisola Adebayo, Temitope Fadiya, Bukola Popoola, Opeyemi Ogundimu, Funmilade O Adepoju, Ayotomiwa Salawu, Oladipupo Fisher, Olusegun Ogboye, Leopold Zekeng","doi":"10.1177/23259582241238653","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Identifying patterns in the distribution of new HIV infections in the population is critical for HIV programmatic interventions. This study aimed to determine the distribution of New HIV infection by applying the incidence patterns mathematical model to data from Lagos state.</p><p><strong>Methods: </strong>The incidence patterns model (IPM) software is a mathematical model developed by UNAIDS to estimate the demographic and epidemic patterns of HIV infections. This model was adapted in Lagos state to predict the distribution of new HIV infections among specified risk groups in the next 12 months.</p><p><strong>Results: </strong>The IPM predicted a total HIV incidence of 37 cases per 100 000 individuals (3979 new infections) will occur among the 15 to 49 subpopulations. The results also showed that sero-concordant HIV-negative couples with external partners (29%), female sex workers (26%), men-having-sex-with-men (18%), and previously married females (6%) accounted for the majority of the estimated new HIV infections. Overall, key populations constitute almost half (48%) of the estimated number of new HIV infections.</p><p><strong>Conclusion: </strong>The study helped to identify the population groups contributing significantly to new HIV infections. Therefore, priority interventions should be focused on these groups.</p>","PeriodicalId":17328,"journal":{"name":"Journal of the International Association of Providers of AIDS Care","volume":"23 ","pages":"23259582241238653"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association of Providers of AIDS Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23259582241238653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Identifying patterns in the distribution of new HIV infections in the population is critical for HIV programmatic interventions. This study aimed to determine the distribution of New HIV infection by applying the incidence patterns mathematical model to data from Lagos state.

Methods: The incidence patterns model (IPM) software is a mathematical model developed by UNAIDS to estimate the demographic and epidemic patterns of HIV infections. This model was adapted in Lagos state to predict the distribution of new HIV infections among specified risk groups in the next 12 months.

Results: The IPM predicted a total HIV incidence of 37 cases per 100 000 individuals (3979 new infections) will occur among the 15 to 49 subpopulations. The results also showed that sero-concordant HIV-negative couples with external partners (29%), female sex workers (26%), men-having-sex-with-men (18%), and previously married females (6%) accounted for the majority of the estimated new HIV infections. Overall, key populations constitute almost half (48%) of the estimated number of new HIV infections.

Conclusion: The study helped to identify the population groups contributing significantly to new HIV infections. Therefore, priority interventions should be focused on these groups.

应用联合国艾滋病规划署发病模式模型确定尼日利亚拉各斯州艾滋病毒新感染者的分布情况。
背景:确定艾滋病毒新感染者在人群中的分布模式对于艾滋病毒计划干预至关重要。本研究旨在通过将发病模式数学模型应用于拉各斯州的数据,确定艾滋病毒新感染者的分布情况:发病模式模型 (IPM) 软件是联合国艾滋病规划署开发的一种数学模型,用于估算艾滋病病毒感染的人口和流行模式。拉各斯州对该模型进行了调整,以预测未来 12 个月特定风险人群中新感染艾滋病毒的分布情况:根据 IPM 预测,在 15 至 49 岁的亚人群中,艾滋病毒总发病率为每 10 万人 37 例(3979 例新感染病例)。结果还显示,与外部伴侣血清一致的艾滋病毒阴性夫妇(29%)、女性性工作者(26%)、男男性行为者(18%)和已婚女性(6%)占艾滋病毒新感染者估计数的大多数。总体而言,重点人群占艾滋病毒新感染者估计人数的近一半(48%):这项研究有助于确定对新增艾滋病毒感染有重大影响的人群。因此,应优先对这些群体采取干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
43
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信