{"title":"Observability of Time-Varying Fractional Dynamical Systems with Caputo Fractional Derivative","authors":"","doi":"10.1007/s00009-024-02615-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Modeling dynamical systems with real-life data having time-dependent disturbances is better captured with time-varying systems. The qualitative properties of such a system in a fractional sense are hardly examined. Observability is one property where the system’s initial states are determined based on the output of some observation system. In this paper, we investigate the observability of time-varying fractional dynamical systems. A state-transition matrix represents the solution of the time-varying fractional dynamical systems. The observability results of linear and nonlinear systems are obtained using the Gramian matrix technique and the Banach contraction mapping theorem respectively. The obtained theoretical results for the observability of the time-varying fractional dynamical systems are compared with those of the time-invariant fractional dynamical system (FDS). Several numerical examples are provided to validate the theoretical results. Also, a numerical example to study the observability of a fractional spring–mass system is provided to verify the applicability of this study.</p>","PeriodicalId":49829,"journal":{"name":"Mediterranean Journal of Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02615-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling dynamical systems with real-life data having time-dependent disturbances is better captured with time-varying systems. The qualitative properties of such a system in a fractional sense are hardly examined. Observability is one property where the system’s initial states are determined based on the output of some observation system. In this paper, we investigate the observability of time-varying fractional dynamical systems. A state-transition matrix represents the solution of the time-varying fractional dynamical systems. The observability results of linear and nonlinear systems are obtained using the Gramian matrix technique and the Banach contraction mapping theorem respectively. The obtained theoretical results for the observability of the time-varying fractional dynamical systems are compared with those of the time-invariant fractional dynamical system (FDS). Several numerical examples are provided to validate the theoretical results. Also, a numerical example to study the observability of a fractional spring–mass system is provided to verify the applicability of this study.
期刊介绍:
The Mediterranean Journal of Mathematics (MedJM) is a publication issued by the Department of Mathematics of the University of Bari. The new journal replaces the Conferenze del Seminario di Matematica dell’Università di Bari which has been in publication from 1954 until 2003.
The Mediterranean Journal of Mathematics aims to publish original and high-quality peer-reviewed papers containing significant results across all fields of mathematics. The submitted papers should be of medium length (not to exceed 20 printed pages), well-written and appealing to a broad mathematical audience.
In particular, the Mediterranean Journal of Mathematics intends to offer mathematicians from the Mediterranean countries a particular opportunity to circulate the results of their researches in a common journal. Through such a new cultural and scientific stimulus the journal aims to contribute to further integration amongst Mediterranean universities, though it is open to contribution from mathematicians across the world.