Central limit theorem for euclidean minimal spanning acycles

IF 0.5 3区 数学 Q3 MATHEMATICS
Primoz Skraba, D. Yogeshwaran
{"title":"Central limit theorem for euclidean minimal spanning acycles","authors":"Primoz Skraba, D. Yogeshwaran","doi":"10.1142/s1793525323500590","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate asymptotics for the minimal spanning acycles (MSAs) of the (Alpha)-Delaunay complex on a stationary Poisson process on <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. MSAs are topological (or higher-dimensional) generalizations of minimal spanning trees. We establish a central limit theorem (CLT) for total weight of the MSA on a Poisson Alpha-Delaunay complex. Our approach also allows us to establish CLTs for the sum of birth times and lifetimes in the persistent diagram of the Delaunay complex. The key to our proof is in showing the so-called <i>weak stabilization</i> of MSAs which proceeds by establishing suitable chain maps and uses matroidal properties of MSAs. In contrast to the proof of weak-stabilization for Euclidean minimal spanning trees via percolation-theoretic estimates, our weak-stabilization proof is algebraic in nature and provides an alternative proof even in the case of minimal spanning trees.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500590","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate asymptotics for the minimal spanning acycles (MSAs) of the (Alpha)-Delaunay complex on a stationary Poisson process on d,d2. MSAs are topological (or higher-dimensional) generalizations of minimal spanning trees. We establish a central limit theorem (CLT) for total weight of the MSA on a Poisson Alpha-Delaunay complex. Our approach also allows us to establish CLTs for the sum of birth times and lifetimes in the persistent diagram of the Delaunay complex. The key to our proof is in showing the so-called weak stabilization of MSAs which proceeds by establishing suitable chain maps and uses matroidal properties of MSAs. In contrast to the proof of weak-stabilization for Euclidean minimal spanning trees via percolation-theoretic estimates, our weak-stabilization proof is algebraic in nature and provides an alternative proof even in the case of minimal spanning trees.

欧几里得最小跨度循环的中心极限定理
在本文中,我们研究了 ℝd,d≥2 上静止泊松过程的 (Alpha)-Delaunay 复数的最小跨循环(MSA)的渐近性。MSA 是最小生成树的拓扑(或高维)概括。我们建立了泊松 Alpha-Delaunay 复数上 MSA 总重的中心极限定理(CLT)。我们的方法还允许我们建立德劳内复合体持久图中出生时间和寿命之和的中心极限定理。我们证明的关键在于展示所谓的 MSA 弱稳定,即通过建立合适的链映射并利用 MSA 的矩阵性质来实现。与通过渗流理论估计对欧氏最小生成树的弱稳定证明不同,我们的弱稳定证明是代数性质的,即使在最小生成树的情况下也提供了另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信