{"title":"A Generalization of the Wiener–Hopf Method for an Equation in Two Variables with Three Unknown Functions","authors":"Anastasia V. Kisil","doi":"10.1137/23m1562445","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 464-476, April 2024. <br/> Abstract. This manuscript presents an analytic solution to a generalization of the Wiener–Hopf equation in two variables and with three unknown functions. This equation arises in many applications, for example, when solving the discrete Helmholtz equation associated with scattering on a domain with perpendicular boundary. The traditional Wiener–Hopf method is suitable for problems involving boundary data on co-linear semi-infinite intervals, not for boundaries at an angle. This significant extension will enable the analytical solution to a new class of problems with more boundary configurations. Progress is made by defining an underlining manifold that links the two variables. This allows one to meromorphically continue the unknown functions on this manifold and formulate a jump condition. As a result the problem is fully solvable in terms of Cauchy-type integrals, which is surprising since this is not always possible for this type of functional equation.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1562445","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 464-476, April 2024. Abstract. This manuscript presents an analytic solution to a generalization of the Wiener–Hopf equation in two variables and with three unknown functions. This equation arises in many applications, for example, when solving the discrete Helmholtz equation associated with scattering on a domain with perpendicular boundary. The traditional Wiener–Hopf method is suitable for problems involving boundary data on co-linear semi-infinite intervals, not for boundaries at an angle. This significant extension will enable the analytical solution to a new class of problems with more boundary configurations. Progress is made by defining an underlining manifold that links the two variables. This allows one to meromorphically continue the unknown functions on this manifold and formulate a jump condition. As a result the problem is fully solvable in terms of Cauchy-type integrals, which is surprising since this is not always possible for this type of functional equation.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.