{"title":"Minimal Invariant Subspaces for an Affine Composition Operator","authors":"João R. Carmo, Ben Hur Eidt, S. Waleed Noor","doi":"10.1007/s11785-024-01501-9","DOIUrl":null,"url":null,"abstract":"<p>The composition operator <span>\\(C_{\\phi _a}f=f\\circ \\phi _a\\)</span> on the Hardy–Hilbert space <span>\\(H^2({\\mathbb {D}})\\)</span> with affine symbol <span>\\(\\phi _a(z)=az+1-a\\)</span> and <span>\\(0<a<1\\)</span> has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for <span>\\(C_{\\phi _a}\\)</span> is one-dimensional. These minimal invariant subspaces are always singly-generated <span>\\( K_f:= \\overline{\\textrm{span} \\{f, C_{\\phi _a}f, C^2_{\\phi _a}f, \\ldots \\}}\\)</span> for some <span>\\(f\\in H^2({\\mathbb {D}})\\)</span>. In this article we characterize the minimal <span>\\(K_f\\)</span> when <i>f</i> has a nonzero limit at the point 1 or if its derivative <span>\\(f'\\)</span> is bounded near 1. We also consider the role of the zero set of <i>f</i> in determining <span>\\(K_f\\)</span>. Finally we prove a result linking universality in the sense of Rota with cyclicity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01501-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The composition operator \(C_{\phi _a}f=f\circ \phi _a\) on the Hardy–Hilbert space \(H^2({\mathbb {D}})\) with affine symbol \(\phi _a(z)=az+1-a\) and \(0<a<1\) has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for \(C_{\phi _a}\) is one-dimensional. These minimal invariant subspaces are always singly-generated \( K_f:= \overline{\textrm{span} \{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\). In this article we characterize the minimal \(K_f\) when f has a nonzero limit at the point 1 or if its derivative \(f'\) is bounded near 1. We also consider the role of the zero set of f in determining \(K_f\). Finally we prove a result linking universality in the sense of Rota with cyclicity.