Minimal Invariant Subspaces for an Affine Composition Operator

Pub Date : 2024-03-18 DOI:10.1007/s11785-024-01501-9
João R. Carmo, Ben Hur Eidt, S. Waleed Noor
{"title":"Minimal Invariant Subspaces for an Affine Composition Operator","authors":"João R. Carmo, Ben Hur Eidt, S. Waleed Noor","doi":"10.1007/s11785-024-01501-9","DOIUrl":null,"url":null,"abstract":"<p>The composition operator <span>\\(C_{\\phi _a}f=f\\circ \\phi _a\\)</span> on the Hardy–Hilbert space <span>\\(H^2({\\mathbb {D}})\\)</span> with affine symbol <span>\\(\\phi _a(z)=az+1-a\\)</span> and <span>\\(0&lt;a&lt;1\\)</span> has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for <span>\\(C_{\\phi _a}\\)</span> is one-dimensional. These minimal invariant subspaces are always singly-generated <span>\\( K_f:= \\overline{\\textrm{span} \\{f, C_{\\phi _a}f, C^2_{\\phi _a}f, \\ldots \\}}\\)</span> for some <span>\\(f\\in H^2({\\mathbb {D}})\\)</span>. In this article we characterize the minimal <span>\\(K_f\\)</span> when <i>f</i> has a nonzero limit at the point 1 or if its derivative <span>\\(f'\\)</span> is bounded near 1. We also consider the role of the zero set of <i>f</i> in determining <span>\\(K_f\\)</span>. Finally we prove a result linking universality in the sense of Rota with cyclicity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01501-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The composition operator \(C_{\phi _a}f=f\circ \phi _a\) on the Hardy–Hilbert space \(H^2({\mathbb {D}})\) with affine symbol \(\phi _a(z)=az+1-a\) and \(0<a<1\) has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for \(C_{\phi _a}\) is one-dimensional. These minimal invariant subspaces are always singly-generated \( K_f:= \overline{\textrm{span} \{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\). In this article we characterize the minimal \(K_f\) when f has a nonzero limit at the point 1 or if its derivative \(f'\) is bounded near 1. We also consider the role of the zero set of f in determining \(K_f\). Finally we prove a result linking universality in the sense of Rota with cyclicity.

分享
查看原文
仿射合成算子的最小不变子空间
哈代-希尔伯特空间(H^2({\mathbb {D}})上的组成算子 \(C_{\phi _a}f=f\circ \phi _a\) 具有仿射符号 \(\phi _a(z)=az+1-a\) 和 \(0<a<;(C_{\phi_a}/)的每个最小不变子空间都是一维的情况下,复可分离希尔伯特空间的不变子空间问题才成立。这些最小不变子空间总是单生成的( K_f:= (overline{\textrm{span})。\{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\).在本文中,我们将描述当f在点1处有一个非零极限或者其导数\(f'\)在1附近有边界时的\(K_f\)最小值。我们还考虑了 f 的零集在决定 \(K_f\) 时的作用。最后,我们证明了一个将罗塔意义上的普遍性与循环性联系起来的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信