{"title":"Minimal Invariant Subspaces for an Affine Composition Operator","authors":"João R. Carmo, Ben Hur Eidt, S. Waleed Noor","doi":"10.1007/s11785-024-01501-9","DOIUrl":null,"url":null,"abstract":"<p>The composition operator <span>\\(C_{\\phi _a}f=f\\circ \\phi _a\\)</span> on the Hardy–Hilbert space <span>\\(H^2({\\mathbb {D}})\\)</span> with affine symbol <span>\\(\\phi _a(z)=az+1-a\\)</span> and <span>\\(0<a<1\\)</span> has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for <span>\\(C_{\\phi _a}\\)</span> is one-dimensional. These minimal invariant subspaces are always singly-generated <span>\\( K_f:= \\overline{\\textrm{span} \\{f, C_{\\phi _a}f, C^2_{\\phi _a}f, \\ldots \\}}\\)</span> for some <span>\\(f\\in H^2({\\mathbb {D}})\\)</span>. In this article we characterize the minimal <span>\\(K_f\\)</span> when <i>f</i> has a nonzero limit at the point 1 or if its derivative <span>\\(f'\\)</span> is bounded near 1. We also consider the role of the zero set of <i>f</i> in determining <span>\\(K_f\\)</span>. Finally we prove a result linking universality in the sense of Rota with cyclicity.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"25 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01501-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The composition operator \(C_{\phi _a}f=f\circ \phi _a\) on the Hardy–Hilbert space \(H^2({\mathbb {D}})\) with affine symbol \(\phi _a(z)=az+1-a\) and \(0<a<1\) has the property that the Invariant Subspace Problem for complex separable Hilbert spaces holds if and only if every minimal invariant subspace for \(C_{\phi _a}\) is one-dimensional. These minimal invariant subspaces are always singly-generated \( K_f:= \overline{\textrm{span} \{f, C_{\phi _a}f, C^2_{\phi _a}f, \ldots \}}\) for some \(f\in H^2({\mathbb {D}})\). In this article we characterize the minimal \(K_f\) when f has a nonzero limit at the point 1 or if its derivative \(f'\) is bounded near 1. We also consider the role of the zero set of f in determining \(K_f\). Finally we prove a result linking universality in the sense of Rota with cyclicity.
期刊介绍:
Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.