Multi-sequence spatio-temporal feature fusion network for peak-hour passenger flow prediction in urban rail transit

IF 3.3 3区 工程技术 Q2 TRANSPORTATION
Lining Liu , Yugang Liu , Xiaofei Ye
{"title":"Multi-sequence spatio-temporal feature fusion network for peak-hour passenger flow prediction in urban rail transit","authors":"Lining Liu ,&nbsp;Yugang Liu ,&nbsp;Xiaofei Ye","doi":"10.1080/19427867.2024.2327805","DOIUrl":null,"url":null,"abstract":"<div><div>This research addresses the challenge of predicting URT station passenger flow during peak hour. The Multi-Sequence Spatio-Temporal Feature Fusion Network Model (MSSTFFN) based on trend decomposition is introduced to capture complex spatio-temporal correlations. This model combines seasonal trend decomposition, graph convolutional neural networks, and modified Transformer networks. The MSSTFFN model is evaluated using actual data from Hangzhou City. The results indicate that, in comparison to the baseline model, this model consistently delivers the best prediction results across various datasets as well as prediction tasks. It exhibits exceptional and consistent performance in prediction sub-tasks involving different input and prediction step combinations, highlighting its advanced, robust, and versatile nature. Through micro-comparisons of specific prediction results for different types of stations, the practical application value is verified. Furthermore, through the design of ablation experiments and testing on various datasets, the contribution value of the features and model’s generalization capability are validated.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 1","pages":"Pages 86-102"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S194278672400016X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This research addresses the challenge of predicting URT station passenger flow during peak hour. The Multi-Sequence Spatio-Temporal Feature Fusion Network Model (MSSTFFN) based on trend decomposition is introduced to capture complex spatio-temporal correlations. This model combines seasonal trend decomposition, graph convolutional neural networks, and modified Transformer networks. The MSSTFFN model is evaluated using actual data from Hangzhou City. The results indicate that, in comparison to the baseline model, this model consistently delivers the best prediction results across various datasets as well as prediction tasks. It exhibits exceptional and consistent performance in prediction sub-tasks involving different input and prediction step combinations, highlighting its advanced, robust, and versatile nature. Through micro-comparisons of specific prediction results for different types of stations, the practical application value is verified. Furthermore, through the design of ablation experiments and testing on various datasets, the contribution value of the features and model’s generalization capability are validated.
用于城市轨道交通高峰时段客流预测的多序列时空特征融合网络
本研究解决了预测城市轨道交通车站高峰时段客流量的难题。基于趋势分解的多序列时空特征融合网络模型(MSSTFFN)可用于预测地铁站高峰时段的客流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信