A path-dependent PDE solver based on signature kernels

Alexandre Pannier, Cristopher Salvi
{"title":"A path-dependent PDE solver based on signature kernels","authors":"Alexandre Pannier, Cristopher Salvi","doi":"arxiv-2403.11738","DOIUrl":null,"url":null,"abstract":"We develop a provably convergent kernel-based solver for path-dependent PDEs\n(PPDEs). Our numerical scheme leverages signature kernels, a recently\nintroduced class of kernels on path-space. Specifically, we solve an optimal\nrecovery problem by approximating the solution of a PPDE with an element of\nminimal norm in the signature reproducing kernel Hilbert space (RKHS)\nconstrained to satisfy the PPDE at a finite collection of collocation paths. In\nthe linear case, we show that the optimisation has a unique closed-form\nsolution expressed in terms of signature kernel evaluations at the collocation\npaths. We prove consistency of the proposed scheme, guaranteeing convergence to\nthe PPDE solution as the number of collocation points increases. Finally,\nseveral numerical examples are presented, in particular in the context of\noption pricing under rough volatility. Our numerical scheme constitutes a valid\nalternative to the ubiquitous Monte Carlo methods.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.11738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a provably convergent kernel-based solver for path-dependent PDEs (PPDEs). Our numerical scheme leverages signature kernels, a recently introduced class of kernels on path-space. Specifically, we solve an optimal recovery problem by approximating the solution of a PPDE with an element of minimal norm in the signature reproducing kernel Hilbert space (RKHS) constrained to satisfy the PPDE at a finite collection of collocation paths. In the linear case, we show that the optimisation has a unique closed-form solution expressed in terms of signature kernel evaluations at the collocation paths. We prove consistency of the proposed scheme, guaranteeing convergence to the PPDE solution as the number of collocation points increases. Finally, several numerical examples are presented, in particular in the context of option pricing under rough volatility. Our numerical scheme constitutes a valid alternative to the ubiquitous Monte Carlo methods.
基于签名核的路径依赖 PDE 求解器
我们开发了一种可证明收敛的基于内核的路径依赖性多项式方程(PPDEs)求解器。我们的数值方案利用了签名核,这是最近推出的一类路径空间核。具体来说,我们通过用签名再现核希尔伯特空间(RKHS)中的最小规范元素近似PPDE的解来解决最优恢复问题,该元素受限于满足PPDE在有限的配位路径集合。在线性情况下,我们证明了优化有一个唯一的闭式解,该解是用配位路径上的签名核评估来表示的。我们证明了所提方案的一致性,保证了随着配准点数量的增加而收敛于 PPDE 解。最后,我们介绍了几个数值示例,特别是在粗略波动下的期权定价方面。我们的数值方案是无处不在的蒙特卡罗方法的有效替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信