Mapping Graph Homology to \(K\)-Theory of Roe Algebras

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
V. Manuilov
{"title":"Mapping Graph Homology to \\(K\\)-Theory of Roe Algebras","authors":"V. Manuilov","doi":"10.1134/S106192084010102","DOIUrl":null,"url":null,"abstract":"<p> Given a graph <span>\\(\\Gamma\\)</span>, one may consider the set <span>\\(X\\)</span> of its vertices as a metric space by assuming that all edges have length one. We consider two versions of homology theory of <span>\\(\\Gamma\\)</span> and their <span>\\(K\\)</span>-theory counterparts — the <span>\\(K\\)</span>-theory of the (uniform) Roe algebra of the metric space <span>\\(X\\)</span> of vertices of <span>\\(\\Gamma\\)</span>. We construct here a natural mapping from homology of <span>\\(\\Gamma\\)</span> to the <span>\\(K\\)</span>-theory of the Roe algebra of <span>\\(X\\)</span>, and its uniform version. We show that, when <span>\\(\\Gamma\\)</span> is the Cayley graph of <span>\\(\\mathbb Z\\)</span>, the constructed mappings are isomorphisms. </p><p> <b> DOI</b> 10.1134/S106192084010102 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 1","pages":"132 - 136"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192084010102","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph \(\Gamma\), one may consider the set \(X\) of its vertices as a metric space by assuming that all edges have length one. We consider two versions of homology theory of \(\Gamma\) and their \(K\)-theory counterparts — the \(K\)-theory of the (uniform) Roe algebra of the metric space \(X\) of vertices of \(\Gamma\). We construct here a natural mapping from homology of \(\Gamma\) to the \(K\)-theory of the Roe algebra of \(X\), and its uniform version. We show that, when \(\Gamma\) is the Cayley graph of \(\mathbb Z\), the constructed mappings are isomorphisms.

DOI 10.1134/S106192084010102

将图同调映射到 $$K$$ - Roe 算法理论
摘要 给定一个图 (\(\Gamma\)),我们可以把它的顶点集 (\(X\))看作一个度量空间,假设所有的边的长度都是一。我们考虑两个版本的 \(\Gamma\) 的同调理论和它们的 \(K\) 理论对应物-- \(\Gamma\) 的顶点的度量空间 \(X\) 的(统一)Roe代数的 \(K\) 理论。我们在这里构建了从\(\Gamma\)的同调到\(X\)的Roe代数的\(K\)-理论及其统一版本的自然映射。我们证明了当\(\Gamma\) 是\(\mathbb Z\) 的 Cayley 图时,所构造的映射是同构的。 doi 10.1134/s106192084010102
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信