Risk Quadrangle and Robust Optimization Based on $\varphi$-Divergence

Cheng Peng, Anton Malandii, Stan Uryasev
{"title":"Risk Quadrangle and Robust Optimization Based on $\\varphi$-Divergence","authors":"Cheng Peng, Anton Malandii, Stan Uryasev","doi":"arxiv-2403.10987","DOIUrl":null,"url":null,"abstract":"This paper studies robust and distributionally robust optimization based on\nthe extended $\\varphi$-divergence under the Fundamental Risk Quadrangle\nframework. We present the primal and dual representations of the quadrangle\nelements: risk, deviation, regret, error, and statistic. The framework provides\nan interpretation of portfolio optimization, classification and regression as\nrobust optimization. We furnish illustrative examples demonstrating that many\ncommon problems are included in this framework. The $\\varphi$-divergence risk\nmeasure used in distributionally robust optimization is a special case. We\nconduct a case study to visualize the risk envelope.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.10987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies robust and distributionally robust optimization based on the extended $\varphi$-divergence under the Fundamental Risk Quadrangle framework. We present the primal and dual representations of the quadrangle elements: risk, deviation, regret, error, and statistic. The framework provides an interpretation of portfolio optimization, classification and regression as robust optimization. We furnish illustrative examples demonstrating that many common problems are included in this framework. The $\varphi$-divergence risk measure used in distributionally robust optimization is a special case. We conduct a case study to visualize the risk envelope.
基于$\varphi$-发散的风险四边形和稳健优化
本文在基本风险四边形框架下研究基于扩展的$\varphi$-发散的稳健和分布稳健优化。我们介绍了四边形元素的基本表示法和对偶表示法:风险、偏差、遗憾、误差和统计量。该框架将投资组合优化、分类和回归解释为稳健优化。我们举例说明了许多常见问题都包含在这一框架中。分布稳健优化中使用的 $\varphi$- divergence 风险度量就是一个特例。我们进行了一项案例研究,以直观展示风险包络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信