CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS

IF 0.6 4区 数学 Q3 MATHEMATICS
NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA
{"title":"CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS","authors":"NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA","doi":"10.1017/s000497272400011x","DOIUrl":null,"url":null,"abstract":"We show that the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline1.png\" /> <jats:tex-math> $I_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline2.png\" /> <jats:tex-math> $0&lt;\\alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline3.png\" /> <jats:tex-math> $M_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline4.png\" /> <jats:tex-math> $0\\le \\alpha &lt;n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline5.png\" /> <jats:tex-math> $M_\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, <jats:italic>Georgian Math. J.</jats:italic>18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline6.png\" /> <jats:tex-math> $I_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are essentially new.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"101 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400011x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the fractional integral operator $I_{\alpha }$ , $0<\alpha <n$ , and the fractional maximal operator $M_{\alpha }$ , $0\le \alpha <n$ , are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator $M_\alpha $ are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, Georgian Math. J.18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator $I_{\alpha }$ are essentially new.
choquet 积分、hausdorff 内容和分式算子
我们证明了分数积分算子 $I_{\alpha }$ , $0<\alpha <n$ 和分数最大算子 $M_{\alpha }$ , $0\le \alpha <n$ 在弱 Choquet 空间上关于 Hausdorff 内容是有界的。我们还在 Choquet-Morrey 空间上研究了这些算子。小数最大算子 $M_\alpha $ 的结果是唐['Choquet 积分、加权 Hausdorff 内容和最大算子',Georgian Math.J.18(3)(2011),587-596] 以及亚当斯和奥罗比特及韦尔德拉的早期工作。分数积分算子 $I_{\alpha }$ 的结果本质上是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信