{"title":"CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS","authors":"NAOYA HATANO, RYOTA KAWASUMI, HIROKI SAITO, HITOSHI TANAKA","doi":"10.1017/s000497272400011x","DOIUrl":null,"url":null,"abstract":"We show that the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline1.png\" /> <jats:tex-math> $I_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline2.png\" /> <jats:tex-math> $0<\\alpha <n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline3.png\" /> <jats:tex-math> $M_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline4.png\" /> <jats:tex-math> $0\\le \\alpha <n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline5.png\" /> <jats:tex-math> $M_\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, <jats:italic>Georgian Math. J.</jats:italic>18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400011X_inline6.png\" /> <jats:tex-math> $I_{\\alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are essentially new.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"101 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400011x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the fractional integral operator $I_{\alpha }$ , $0<\alpha <n$ , and the fractional maximal operator $M_{\alpha }$ , $0\le \alpha <n$ , are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator $M_\alpha $ are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, Georgian Math. J.18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator $I_{\alpha }$ are essentially new.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society