{"title":"Portfolio Optimization Using Novel EW-MV Method in Conjunction with Asset Preselection","authors":"Priya Singh, Manoj Jha","doi":"10.1007/s10614-024-10583-8","DOIUrl":null,"url":null,"abstract":"<p>Integration of asset preselection with appropriate portfolio optimization techniques can improve the performance of the portfolio optimization models. This paper morphed the potential asset selection and the optimal portfolio construction rather than focusing on one. A large volume of sample data from 25 stocks is used for the experiment from the National Stock Exchange, India, between January 2005 and December 2021. Initially, a 3-step screening approach, an asset selection method is applied to select potential assets. The 3-steps comprise data choice, fundamental screening, and the Long Short Term Memory model anticipating real-time stock prices to shortlist stocks with higher expected returns. The suggested approach is effective in determining the quality of assets. Further, the optimal asset allocation is done by introducing a novel exponentially weighted-mean-variance model. This exponential weighting scheme outperforms the classical Mean-Variance model when applied to the maximum Sharpe ratio model. The proposed model outperforms the five baseline techniques in terms of the Sharpe ratio and average potential returns and risks. Additionally, the proposed model’s resilience across diversified time frames is tested through the incorporation of multiple time windows, demonstrating robustness of the performance.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"52 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10583-8","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Integration of asset preselection with appropriate portfolio optimization techniques can improve the performance of the portfolio optimization models. This paper morphed the potential asset selection and the optimal portfolio construction rather than focusing on one. A large volume of sample data from 25 stocks is used for the experiment from the National Stock Exchange, India, between January 2005 and December 2021. Initially, a 3-step screening approach, an asset selection method is applied to select potential assets. The 3-steps comprise data choice, fundamental screening, and the Long Short Term Memory model anticipating real-time stock prices to shortlist stocks with higher expected returns. The suggested approach is effective in determining the quality of assets. Further, the optimal asset allocation is done by introducing a novel exponentially weighted-mean-variance model. This exponential weighting scheme outperforms the classical Mean-Variance model when applied to the maximum Sharpe ratio model. The proposed model outperforms the five baseline techniques in terms of the Sharpe ratio and average potential returns and risks. Additionally, the proposed model’s resilience across diversified time frames is tested through the incorporation of multiple time windows, demonstrating robustness of the performance.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing