V. M. Samsonov, N. Yu. Sdobnyakov, A. Yu. Kolosov, S. S. Bogdanov, I. V. Talyzin, S. A. Vasilyev, K. G. Savina, V. V. Puytov, A. N. Bazulev
{"title":"On the Problem of Stability of Small Objects by the Example of Molecular Dynamics Models of Metal Nanoparticles and Nanosystems","authors":"V. M. Samsonov, N. Yu. Sdobnyakov, A. Yu. Kolosov, S. S. Bogdanov, I. V. Talyzin, S. A. Vasilyev, K. G. Savina, V. V. Puytov, A. N. Bazulev","doi":"10.1134/S1061933X23601191","DOIUrl":null,"url":null,"abstract":"<p>After briefly discussing the problem of stability/instability of dispersed systems in colloid chemistry, including ideas and concepts dating back to P.A. Rehbinder, the following classification has been proposed for instabilities of individual (free) nanoparticles: (1) instability with respect to the spontaneous disintegration into individual molecules (atoms) or smaller nanoclusters; (2) instability of shape; (3) instability of the integral structure of nanoparticles; (4) instability of the mesoscopic structure; (5) instability of physicochemical characteristics of nanoparticles; and (6) instability with respect to an external environment, including chemical instability, e.g., instability to oxidation. The problems concerning the stability of isomers of metal nanoclusters and of bimetallic core-shell nanostructures are considered as examples. The theoretical concepts of stability and instability have been illustrated by our molecular dynamics data on isomers of Au nanoclusters and mutually inverse (alternative) bimetallic Co@Au and Au@Co core-shell nanostructures, where the first element (before symbol @) corresponds to the central region (core) of a particle, while the second one refers to its shell.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 1","pages":"109 - 119"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23601191","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
After briefly discussing the problem of stability/instability of dispersed systems in colloid chemistry, including ideas and concepts dating back to P.A. Rehbinder, the following classification has been proposed for instabilities of individual (free) nanoparticles: (1) instability with respect to the spontaneous disintegration into individual molecules (atoms) or smaller nanoclusters; (2) instability of shape; (3) instability of the integral structure of nanoparticles; (4) instability of the mesoscopic structure; (5) instability of physicochemical characteristics of nanoparticles; and (6) instability with respect to an external environment, including chemical instability, e.g., instability to oxidation. The problems concerning the stability of isomers of metal nanoclusters and of bimetallic core-shell nanostructures are considered as examples. The theoretical concepts of stability and instability have been illustrated by our molecular dynamics data on isomers of Au nanoclusters and mutually inverse (alternative) bimetallic Co@Au and Au@Co core-shell nanostructures, where the first element (before symbol @) corresponds to the central region (core) of a particle, while the second one refers to its shell.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.